Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24030050-10    https://doi.org/10.11896/cldb.24030050
  金属与金属基复合材料 |
合金元素对汽车排气系统用铁素体不锈钢抗高温氧化和耐腐蚀影响的研究进展
李伟峰1, 张天理1,2,3,*, 徐连勇2, 胡东海3, 陈庚3, 朱志明4, 李红5
1 上海工程技术大学材料科学与工程学院,上海 201620
2 天津大学材料科学与工程学院,天津 100083
3 浙江汉威阀门制造有限公司,浙江 丽水 323600
4 清华大学机械工程系,北京 100084
5 北京工业大学材料科学与工程学院,北京 100124
Research Progress in Effect of Alloying Elements on High Temperature Oxidation Resistance and Corrosion Resistance of Ferritic Stainless Steel for Automobile Exhaust System
LI Weifeng1, ZHANG Tianli1,2,3,*, XU Lianyong2, HU Donghai3, CHEN Geng3, ZHU Zhiming4, LI Hong5
1 School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2 School of Materials Science and Engineering, Tianjin University, Tianjin 100083, China
3 Zhejiang Hanwei Valve Manufacturing Co., Ltd., Lishui 323600, Zhejiang, China
4 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
5 School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 12344KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁素体不锈钢具有比奥氏体不锈钢更低的热膨胀系数,较低的价格以及优异的耐热性和耐腐蚀性能,被广泛用于汽车排气系统。由于汽车排气系统长期暴露于外界腐蚀环境且受到发动机排出的高温高压气体的冲击,因此,抗高温氧化和耐腐蚀一直是困扰汽车排气系统发展的两大难题。本文综述了几种关键合金元素对铁素体不锈钢抗高温氧化和耐腐蚀的影响机制,并给出了排气系统不同部位用铁素体不锈钢在对抗高温氧化和腐蚀方面合金元素的推荐配比,对后续汽车排气系统的加工和再制造具有重要的工程应用和指导价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李伟峰
张天理
徐连勇
胡东海
陈庚
朱志明
李红
关键词:  铁素体不锈钢  合金元素  高温氧化  腐蚀    
Abstract: Compared toaustenitic stainless steel, Ferritic stainless steel has many advantages such as low thermal expansion coefficient, low price and excellent heat resistance and corrosion resistance, which is widely used in automobile exhaust system. Because the automobile exhaust system is exposed to the external corrosion environment for a long time and is impacted by the high temperature and high pressure gas discharged by the engine, the high temperature oxidation resistance and corrosion resistance have always been the two major problems that plague the development of the automobile exhaust system. In this review, the influence mechanism of several key alloying elements on the high temperature oxidation resistance and corrosion resistance of ferritic stainless steel was reviewed, and the recommended ratio of alloying elements for ferritic stainless steel used in different parts of exhaust system to resist high temperature oxidation and corrosion was proposed. It has important engineering application and guiding value for the subsequent processing and remanufacturing of automobile exhaust system.
Key words:  ferritic stainless steel    alloying element    high temperature oxidation    corrosion
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TG142  
通讯作者:  张天理,博士,副教授,研究生导师,国际焊接工程师。长期从事焊接冶金与焊接性、焊接材料与工艺、表面再制造、机器人智能化焊接、高能束/电弧增材制造等教学与科研工作。zhangtianli925@163.com   
作者简介:  李伟峰,上海工程技术大学材料科学与工程学院硕士研究生。在张天理教授的指导下进行研究,目前主要研究领域为不锈钢金属粉型药芯焊丝的开发。
引用本文:    
李伟峰, 张天理, 徐连勇, 胡东海, 陈庚, 朱志明, 李红. 合金元素对汽车排气系统用铁素体不锈钢抗高温氧化和耐腐蚀影响的研究进展[J]. 材料导报, 2025, 39(16): 24030050-10.
LI Weifeng, ZHANG Tianli, XU Lianyong, HU Donghai, CHEN Geng, ZHU Zhiming, LI Hong. Research Progress in Effect of Alloying Elements on High Temperature Oxidation Resistance and Corrosion Resistance of Ferritic Stainless Steel for Automobile Exhaust System. Materials Reports, 2025, 39(16): 24030050-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030050  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24030050
1 Wang W M, Mao H G. Baosteel Technology, 2005, 4, 56 (in Chinese).
王伟明, 毛惠刚. 宝钢技术, 2005, 4, 56.
2 Bi H Y, Wang Z Y, Li X, et al. World Iron & Steel, 2011, 11(5), 1 (in Chinese).
毕洪运, 王治宇, 李鑫, 等. 世界钢铁, 2011, 11(5), 1.
3 Badin V, Diamanti E, Forêt P, et al. Oxid Met, 2014, 82, 347.
4 Chen Y S. Study on high temperature oxidation behavior of ferritic stainless steel for hot end of exhaust system. Master's Thesis, Shanghai University, China, 2019 (in Chinese).
陈以生. 排气系统热端用铁素体不锈钢的高温氧化行为研究. 硕士学位论文, 上海大学, 2019.
5 Chen A Z, Ren J H, Li Z G, et al. China Metallurgy, 2018, 28(1), 27 (in Chinese).
陈安忠, 任娟红, 李照国, 等. 中国冶金, 2018, 28(1), 27.
6 Huttunen-Saarivirta E, Kuokkala V T, Pohjanne P. Corrosion Science, 2014, 87, 344.
7 Li X, Shu J, Bi H Y. Journal of Iron and Steel Research, 2013, 25(5), 54 (in Chinese).
李鑫, 舒俊, 毕洪运. 钢铁研究学报, 2013, 25(5), 54.
8 Shu J, Bi H Y, Li X, et al. Oxidation of Metals, 2012, 78(3), 253.
9 Wu W, Guo Y, Yu H, et al. International Journal of Electrochemical Science, 2015, 10(12), 10689.
10 Zhang M Q, Han Y, Zu G Q, et al. Scanning. 2020, 11.
11 Safikhani A, Esmailian M, Reza S M, et al. International Journal of Hydrogen Energy, 2014, 39(21), 11210.
12 Yun D W, Seo H S, Jun J H, et al. International Journal of Hydrogen Energy, 2012, 37(13), 10328.
13 Azim S, Mohammad E, Taleb T, et al. International Journal of Hydrogen Energy, 2016, 41(14), 6045.
14 Geng S, Zhu J. Journal of Power Sources, 2006, 160(2), 1009.
15 Holt A, Kofstad P. Solid State Ionics, 1999, 117(1), 21.
16 Seo H S, Yun D W, Kim K Y. International Journal of Hydrogen Energy, 2012, 37(21), 16151.
17 Huang X Z, Yang G T. Chinese Journal of Materials Research, 2014, 28(9), 641 (in Chinese).
黄训增, 杨弋涛. 材料研究学报, 2014, 28(9), 641.
18 Young J. Corrosion Series, 2008, 1, 185.
19 Ali-Loytty H, Jusssila P, Valden M. International Journal of Hydrogen Energy, 2013, 38(2), 1039.
20 Seo H S, Yun D W, Kim K Y. International Journal of Hydrogen Energy, 2013, 38(5), 2432.
21 Yun D W, Seo H S, Jun J H, et al. International Journal of Hydrogen Energy, 2011, 36(9), 5595.
22 Ali-Loytty H, Jussila P, Juuti T, et al. International Journal of Hydrogen Energy, 2012, 37(19), 14528.
23 Fu J W, Cui K, Li F, et al. Corrosion Engineering, Science and Technology, 2021, 56(3), 244.
24 Mao H H, Qi X, Cao J, et al. Journal of Iron and Steel Research, International, 2017, 24, 561.
25 Becquerelle P, Hubert M, Savage B. Materials Science and Engineering, 1987, 87, 137.
26 Inoue Y, Hiraid N, Ushioda K J I I. ISIJ International, 2018, 58(6), 1117.
27 Zhang Y B, Zou D N, Wang Q S, et al. Iron & Steel, 2021, 56(3), 71 (in Chinese).
张英波, 邹德宁, 王泉生, 等. 钢铁, 2021, 56(3), 71.
28 Zhang Y, Zou D, Li Y, et al. Journal of Materials Research and Technology, 2021, 11, 1730.
29 Zou D, Zhou Y, Zhang X, et al. Materials Characterization, 2018, 136, 435.
30 Zhang X. Study on recrystallization behavior, formability and high temperature oxidation resistance of ultra-pure ferritic stainless steel containing Al. Ph. D. Thesis, Shanghai University, China, 2016 (in Chinese).
张鑫. 含Al超纯铁素体不锈钢再结晶行为、成形性和高温抗氧化性能研究. 博士学位论文, 上海大学, 2016.
31 Zhang X, Fan L, Xu Y, et al. Materials & Design, 2015, 65, 682.
32 Jiang Z H, Zhuang Y, Li Y, et al. Journal of Iron and Steel Research, International, 2013, 20(5), 6.
33 Xu Y, Zhang X, Fan L, et al. Corrosion Science, 2015, 100, 311.
34 Xu Y, Fu H, Fan L, et al. Corrosion Science, 2019, 161, 108192.
35 Pint B A. Oxidation of Metals, 1996, 45(1), 1.
36 Wei L, Zhang J, Chen L, et al. Corrosion Science, 2018, 142, 79.
37 Peng X, Yan J, Zhou Y, et al. Acta Materialia, 2005, 53(19), 5079.
38 Cheng X, Jiang Z, Wei D, et al. Surface and Coatings Technology, 2014, 258, 257.
39 Safikhani A, Aminfard M. International Journal of Hydrogen Energy, 2014, 39(5), 2286.
40 Zhang H, Cui WF, Wang J J, et al. Journal of Rare Earths, 2010, 28(3), 366 (in Chinese).
张辉, 崔文芳, 王建军, 等. 中国稀土学报, 2010, 28(3), 366.
41 Li X, Shu J, Chen L, et al. Acta Metallurgica Sinica (English Letters), 2014, 27(3), 501.
42 Yu Y C, Zhang S H, Wang S B. High Temperature Materials and Processes, 2018, 37(9-10), 807.
43 Hu H B, Tang X Y. Auto Time, 2021(7), 143 (in Chinese).
胡海波, 汤旭炎. 时代汽车, 2021(7), 143.
44 Dong F, Zhao X H, Yang Lei, et al. Journal of Rare Earths, 2013, 31(2), 228 (in Chinese).
董方, 赵晓辉, 杨雷, 等. 中国稀土学报, 2013, 31(2), 228.
45 Dong F, Zhao X H, Yang L, Chinese Rare Earths, 2014, 35(1), 86 (in Chinese).
董方, 赵晓辉, 杨雷. 稀土, 2014, 35 (1), 86.
46 Li Y, Han J P, Jiang Z H, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(1), 37.
47 Zhang X J. Study on microstructure and corrosion resistance of tin-containing ferritic stainless steel. Ph.D.Thesis, Northeastern University, China, 2017 (in Chinese).
张向军. 含锡铁素体不锈钢组织性能及耐蚀性能研究. 博士学位论文, 东北大学, 2017.
48 Cheng P Z, Dai N W, Zhong N, et al. Corrosion Engineering Science and Technology, 2020, 55(3), 232.
49 Jiang Z H, Han J P, Li Y, et al. Ironmaking & Steelmaking, 2015, 42(7), 504.
[1] 秦传广, 姜博, 刘乃志, 王晔, 胡茂良, 许红雨, 吉泽升, 尚金翅. Al7Si0.5Mg合金喷丸处理微观组织形貌及腐蚀行为研究[J]. 材料导报, 2025, 39(9): 24030204-7.
[2] 赵帅, 文绍牧, 廖柯熹, 秦林, 林冬, 高健. 无损检测技术在高含硫天然气管道中的应用研究进展[J]. 材料导报, 2025, 39(9): 24030169-9.
[3] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[4] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[5] 袁均相, 刘国建, 刘志勇, 佘伟, 张云升. 合金钢在氯盐与硫酸盐作用下的腐蚀行为与机理[J]. 材料导报, 2025, 39(8): 24030019-7.
[6] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[7] 邹晓惠, 刘永飞, 李丹, 姚海元, 董磊磊, 徐云泽. 马氏体钢和高锰钢在人工海水中的冲刷腐蚀行为研究[J]. 材料导报, 2025, 39(8): 24030170-8.
[8] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[9] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[10] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[11] 叶利亚, 陈宏飞, 杨光, 高彦峰. V2O5对β-(Ni,Pt)Al涂层热腐蚀抗性的影响[J]. 材料导报, 2025, 39(7): 24030041-4.
[12] 汤云, 习敏娟, 王许辉, 邓乐淳, 陈强. 吸收主导型Ni/Ni@Ag/EP电磁屏蔽涂层的制备及性能[J]. 材料导报, 2025, 39(6): 24020060-7.
[13] 谢浩民, 李光明, 胡凌越, 毛飞雄, 宫克. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响[J]. 材料导报, 2025, 39(6): 24010227-11.
[14] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[15] 王鑫瑶, 韦永韬, 吴静, 王显彬, 杨文超, 湛永钟. XPS在新型齿科医用材料研究中的应用[J]. 材料导报, 2025, 39(5): 24100162-11.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed