Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24080033-5    https://doi.org/10.11896/cldb.24080033
  无机非金属及其复合材料 |
铝矾土合成Al2O3-MgAl2O4复合材料的烧结性和力学性能研究
王晓军1, 玄松桐2, 王燕锋1, 苏廷龙3, 田玉明4,*
1 吕梁学院物理与电子信息工程系,山西 吕梁 033001
2 山西工程科技职业大学智能制造学院,山西 晋中 030619
3 孝义市金刚耐火材料有限公司,山西 吕梁 032200
4 山西科技学院材料科学与工程学院,山西 晋城 048011
Study on the Sinterability and Mechanical Properties of Al2O3-MgAl2O4 Composites Synthesized from Bauxite
WANG Xiaojun1, XUAN Songtong2, WANG Yanfeng1, SU Tinglong3, TIAN Yuming4,*
1 Department of Physics and Electronic Information Engineering, Lyuliang University, Lvliang 033001, Shanxi, China
2 College of Intelligent Manufacturing, Shanxi Vocational University of Engineering and Technology, Jinzhong 030619, Shanxi, China
3 Xiaoyi King Kong Refractory Co., Ltd., Lvliang 032200, Shanxi, China
4 College of Materials Science and Engineering, Shanxi Institute of Science and Technology, Jincheng 048011, Shanxi, China
下载:  全 文 ( PDF ) ( 21084KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Al2O3-MgAl2O4复合材料因具有优异的性能,可被应用在一些特殊的高温行业中,从而引起了人们的广泛关注。本工作选取铝矾土生料和氧化镁为原料,采用固相烧结工艺在1 350~1 450 ℃保温2 h后,获得了Al2O3-MgAl2O4复合陶瓷材料,研究了MgAl2O4的含量和烧结温度对其致密性和力学性能的影响。研究发现:经1 400 ℃烧结保温2 h后的样品的致密性和力学性能较好,烧结温度升高至1 450 ℃时,样品的致密性和力学性能降低。经1 400 ℃烧结得到的样品中,当MgAl2O4与Al2O3+MgAl2O4的质量比达到35∶100时,样品的性能最佳:显气孔率最小,为0.64%,抗折强度最大,为132.11 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓军
玄松桐
王燕锋
苏廷龙
田玉明
关键词:  复合材料  镁铝尖晶石  离子扩散  力学性能  固溶体    
Abstract: The Al2O3-MgAl2O4 composites are widely used in some special high-temperature industries due to their excellent properties, which arouses widespread attention. In this work, using bauxite and magnesia as raw materials, the Al2O3-MgAl2O4 composites was obtained by solid sintering process at 1 350—1 450 ℃ for 2 h, and then the effects of MgAl2O4 content and sintering temperature on its densification and mechanical properties were studied. The findings show that the sample has a good densification and mechanical property after sintering at 1 400 ℃ for 2 h, while the densification and mechanical property of the sample decrease when the sintering temperature increased to 1 450 ℃. With the mass ratio of MgAl2O4 to Al2O3+MgAl2O4 of 35∶100, the sample has the best performance, with a minimum apparent porosity of 0.64% and a flexural strength of 132.11 MPa.
Key words:  composite    MgAl2O4    ion diffusion    mechanical property    solid solution
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TQ174  
基金资助: 吕梁市高层次科技人才项目(2022RC14;2022RC12);山西省基础研究项目(202103021224318);山西省高等学校教学改革创新项目(J20231373)
通讯作者:  田玉明,工学博士,教授,博士研究生导师,山西科技学院副院长。前主要从事油气压裂支撑剂、利用固废制备耐火材料等先进陶瓷材料设计与制备的研究。tym1654@126.com   
作者简介:  王晓军,博士,吕梁学院物理与电子信息工程系副教授,中北大学半导体与物理学院硕士研究生导师(校外)。目前主要从事先进陶瓷材料设计和机理研究。
引用本文:    
王晓军, 玄松桐, 王燕锋, 苏廷龙, 田玉明. 铝矾土合成Al2O3-MgAl2O4复合材料的烧结性和力学性能研究[J]. 材料导报, 2025, 39(15): 24080033-5.
WANG Xiaojun, XUAN Songtong, WANG Yanfeng, SU Tinglong, TIAN Yuming. Study on the Sinterability and Mechanical Properties of Al2O3-MgAl2O4 Composites Synthesized from Bauxite. Materials Reports, 2025, 39(15): 24080033-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080033  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24080033
1 Wang X J, Tian Y M, Wang Y Y, et al. Journal of Synthetic Crystals, 2019, 48(9), 124 (in Chinese).
王晓军, 田玉明, 王远洋, 等. 人工晶体学报, 2019, 48(9), 124.
2 Xuan S T, Tian Y M, Wang X J. Journal of Materials Science and Engineering, 2022, 40(4), 652 (in Chinese).
玄松桐, 田玉明, 王晓军. 材料科学与工程学报, 2022, 40(4), 652.
3 Zhou Y, Ye D C, Wu Y Q, et al. Ceramics International, 2022, 48(5), 7316.
4 Liu G Q, Li H X, Yang W G, et al. Materials Reports, 2023, 37(20), 22040125 (in Chinese).
刘国齐, 李红霞, 杨文刚, 等. 材料导报, 2023, 37(20), 22040125.
5 Wang X J, Yan X, Liu Y E, et al. Journal of Ceramics, 2024, 45(5), 977 (in Chinese).
王晓军, 严霞, 刘艳娥, 等. 陶瓷学报, 2024, 45(5), 977.
6 Han D, Zhang J, Luo H M, et al. Chemical Industry and Engineering Progress, 2024, 43(7), 3637 (in Chinese).
韩丹, 章健, 罗皓鸣, 等. 化工进展, 2024, 43(7), 3637.
7 Quan Z H, Wang Z F, Liu H, et al. Journal of Central South University (Science and Technology), 2023, 54(5), 1720 (in Chinese).
全正煌, 王周福, 刘浩, 等. 中南大学学报(自然科学版), 2023, 54(5), 1720.
8 Wang X J, Tian Y M, Wang Y Y, et al. Ceramics International, 2020, 46(11), 17784.
9 Zhang Y, Zong C Y, Wang Y T, et al. China Nonferrous Metallurgy, 2023, 52(3), 57 (in Chinese).
张勇, 宗晨宇, 王钰婷, 等. 中国有色冶金, 2023, 52(3), 57.
10 Ma B Y, Li Y, Liu G Q, et al. Ceramics International, 2015, 41(2), 3237.
11 Zhang Z Y, Li Z G, Zhang H Y. Refractories, 2013, 47(6), 418 (in Chinese).
张振燕, 李志刚, 张海燕. 耐火材料, 2013, 47(6), 418.
12 Li R J, Zhang L. International Journal of Applied Ceramic Technology, 2022, 19(4), 2172.
13 Wang B C, Zhang M J, Huang A, et al. Journal of Ceramics, 2017, 38(6), 913 (in Chinese).
王炳超, 张美杰, 黄奥, 等. 陶瓷学报, 2017, 38(6), 913.
14 Li Z F, Huang J G. Journal of the Chinese Ceramic Society, 2018, 46(9), 1250 (in Chinese).
李之凡, 黄建国. 硅酸盐学报, 2018, 46(9), 1250.
15 Xiao X, Wei Y W, Zhou H, et al. Refractories, 2022, 56(6), 499 (in Chinese).
肖雄, 魏耀武, 周辉, 等. 耐火材料, 2022, 56(6), 499.
16 Li T X, Gao Q G, Bi Z Y, et al. Refractories, 2022, 56(3), 258 (in Chinese).
李天学, 郜桥刚, 毕振勇, 等. 耐火材料, 2022, 56(3), 258.
17 Xuan S T, Tian Y M, Kong X C, et al. Journal of Materials Research and Technology, 2023, 25, 2518.
18 Xuan S T, Tian Y M, Kong X C, et al. Ceramics International, 2023, 48(24), 39908.
19 Song X L, Huang X H. Fundamentals of inorganic materials science, Chemical Industry Press, China, 2020, pp. 374 (in Chinese).
宋晓岚, 黄学辉. 无机材料科学基础, 化学工业出版社, 2020, pp. 374.
20 William D C J, David G R. Materials science and engineering:an introduction, John Wiley & Sons Inc., USA, 2020, pp. 256.
21 Cui G W. Defects, diffusion and sintering, Tsinghua University Press, China, 1990, pp. 155 (in Chinese).
崔国文. 缺陷、扩散与烧结, 清华大学出版社, 1990, pp. 155.
22 Xie Z P. Structural ceramics, Tsinghua University Press, China, 2011, pp. 365 (in Chinese).
谢志鹏. 结构陶瓷, 清华大学出版社, 2011, pp. 365.
23 Xu L, Chen M, Yin X L, et al. Ceramics International, 2016, 42(8), 9844.
24 Xie P Y, Hao C A, Luo X D. Bulletin of the Chinese Ceramic Society, 2017, 36(3), 1101 (in Chinese).
谢鹏永, 郝长安, 罗旭东. 硅酸盐通报, 2017, 36(3), 1101.
25 Tomba M A G, Cavalaeri A L. Journal of the European Ceramic Society, 2001, 21(9), 1205.
26 Ren Y H, Ren Q, Wu X L, et al. Materials Chemistry and Physics, 2019, 239, 122060.
27 Braulio M A L, Rigaud M, Buhr A, et al. Ceramics International, 2011, 37(6), 1705.
28 Baudin C, Martinez R, Pena P. Journal of the American Ceramic Society, 1995, 78(7), 1857.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[6] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[7] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[8] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[9] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[10] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[11] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[12] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[13] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[14] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[15] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed