Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24090242-11    https://doi.org/10.11896/cldb.24090242
  高分子与聚合物基复合材料 |
超疏水表面机械稳定性研究现状及发展趋势
麻春英1, 高俊1, 沈明学1,2,*
1 华东交通大学材料科学与工程学院,南昌 330013
2 华东交通大学轨道交通基础设施运维安全保障技术国家地方联合工程研究中心,南昌 330013
Research Status and Development Trend of Mechanical Stability of Superhydrophobic Surfaces
MA Chunying1, GAO Jun1, SHEN Mingxue1,2,*
1 School of Material Science and Engineering, East China Jiaotong University, Nanchang 330013, China
2 National Local Joint Engineering Research Center of Safety Guarantee Technology for Operation and Maintenance of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 45980KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超疏水表面因具有超疏水、自清洁、抗结冰、防雾、耐腐蚀等性能,在航海、航天、食品加工、建筑等领域都具有广阔的应用前景,越来越受到人们的关注。然而,超疏水材料表面的机械稳定性往往较差,在外部环境各种复杂工况下容易因为磨损而失去超疏水性能,制约了超疏水材料的应用和发展。改善和提高超疏水表面的机械稳定性成了推动超疏水材料发展亟待解决的关键问题。本文简述了超疏水表面的疏水机理,分析了超疏水表面机械稳定性差的原因,梳理了超疏水表面机械稳定性的评定方法,总结了提高超疏水表面机械稳定性能的途径。最后,对未来研究耐久性良好的超疏水表面的发展方向和趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
麻春英
高俊
沈明学
关键词:  超疏水表面  机械稳定性  耐久性  疏水机理  评定方法    
Abstract: Because of its good properties such as superhydrophobic, self-cleaning, anti-icing, anti-fogging, corrosion resistance, superhydrophobic surfaces have broad application prospects in navigation, aerospace, food processing, construction and other fields, and have attracted more and more attention. However, the poor mechanical stability of the surface of superhydrophobic materials easily leads to a failure of superhydrophobic properties due to mechanical wear under various complex working conditions in the external environment, which restricts the application and development of superhydrophobic materials. Improving and enhancing the mechanical stability of superhydrophobic surfaces has become a key issue to promote the development of superhydrophobic materials. In this summary, the hydrophobic mechanism of superhydrophobic surfaces is briefly described, the reasons for the poor mechanical stability of superhydrophobic surface are analyzed, the evaluation methods of mechanical stability of superhydrophobic surfaces are sorted out, and the ways to improve the mechanical stability of superhydrophobic surfaces are summarized. Finally, the development direction and trend of superhydrophobic surfaces with good durability are prospected in the future.
Key words:  superhydrophobic surface    mechanical stability    durability    hydrophobic mechanism    evaluation method
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TG178  
基金资助: 国家自然科学基金(52061012;52375181);江西省自然科学基金重点项目(20224ACB204012)
通讯作者:  * 沈明学,华东交通大学材料科学与工程学院教授,博士,博士研究生导师。现主要从事摩擦学及表面工程、大型装备关键零部件服役行为研究。shenmingxue@126.com   
作者简介:  麻春英,博士,硕士研究生导师,江西摩擦学分会理事。主要从事材料表面改性与防护、摩擦磨损等方面的研究。
高俊,现为华东交通大学材料科学与工程学院硕士研究生,在沈明学教授和麻春英老师的指导下进行研究。目前主要研究领域为表面工程和轮轨摩擦学。
引用本文:    
麻春英, 高俊, 沈明学. 超疏水表面机械稳定性研究现状及发展趋势[J]. 材料导报, 2025, 39(14): 24090242-11.
MA Chunying, GAO Jun, SHEN Mingxue. Research Status and Development Trend of Mechanical Stability of Superhydrophobic Surfaces. Materials Reports, 2025, 39(14): 24090242-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090242  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24090242
1 Philip Ball. Nature, 1999, 400, 507.
2 Sun T, Feng L, Gao X, et al. Accounts of Chemical Research, 2005, 38(8), 644.
3 Guo Z G, Liu W M. Progress in Chemistry, 2006, 18(6), 721 (in Chinese).
郭志光, 刘维民. 化学进展, 2006, 18(6), 721.
4 Davenport J, Hughes R N, Shorten M, et al. Marine Ecology Progress Series, 2011, 430, 171.
5 Golovin K B, Gose J W, Perlin M, et al. Philosophical Transactions of the Royal Society A, 2016, 374(2073), 20160189.
6 Zhu Z, Tian Y, Liu Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 641, 128562.
7 Liu H, Li X, Lv L, et al. Materials Research Express, 2020, 7(11), 116403.
8 Ansari M B, Chandio A D, Rizvi S B H, et al. Optik, 2022, 257, 168866.
9 Luo W, Xu J, Li G, et al. Langmuir, 2022, 38(23), 7129.
10 Qing Y, Long C, An K, et al. Composites Part B:Engineering, 2022, 236, 109797.
11 Xu Y, Liao J, He R, et al. Materials Today Communications, 2024, 38, 107658.
12 Yang J, He T, Li X, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 657, 130590.
13 Chen B, Zhang R, Fu H, et al. Scientific Reports, 2022, 12(1), 2187.
14 Da Silva R G C, Malta M I C, De Carvalho L A P, et al. Surface and Coatings Technology, 2023, 457, 129293.
15 Hassan N, Fadhali M M, Al-Sulaimi S, et al. Journal of Molecular Liquids, 2023, 383, 122085.
16 Tran N G, Chun D M, Abd-Elrahim A G. Journal of Alloys and Compounds, 2023, 960, 170907.
17 Gentile F, Coluccio M L, Limongi T, et al. Micromachines, 2014, 5, 239.
18 Lima A C, Mano J F. Nanomedicine (London, England), 2015, 10(2), 271.
19 Lima A C, Mano J F. Nanomedicine (London, England), 2015, 10(1), 103.
20 Ueda E, Levkin P A. Advanced Materials, 2013, 25(9), 1368.
21 Ou H, Dai Z, Gao Y, et al. ACS Applied Materials & Interfaces, 2023, 15(33), 39989.
22 Xu X, Qing Y, Liu N, et al. ACS Applied Materials & Interfaces, 2022, 14(32), 37039.
23 Yong J, Yang Q, Hou X, et al. Nanomaterials, 2022, 12(4), 688.
24 Chakraborty A, Gottumukkala N R, Gupta M C. Langmuir, 2023, 39(32), 11259.
25 Liu H, Di Y L, Wang H D, et al. Surface Engineering, 2023, 39(1), 25.
26 Wang B, Chen D, Li M, et al. Materials Letters, 2024, 355, 135481.
27 Wu Z, Liu Y, Zhang Y, et al. Journal of Materials Research, 2024, 39(5), 850.
28 Zhang W, Li S, Wei D, et al. Journal of Materials Science & Technology, 2024, 186, 231.
29 Shi S, Wang X, Li Z, et al. ACS Applied Materials & Interfaces, 2023, 15(5), 7442.
30 Shi Z, Zeng H, Yuan Y S, et al. Advanced Functional Materials, 2023, 33(16), 2213042.
31 Sun Y, Liu R, Xu J, et al. Polymer Engineering and Science, 2023, 63(4), 1274.
32 Xie Q, Yin G H, Duan Q J, et al. Polymer Composites, 2023, 44(9), 6071.
33 Cao Y, Lu Y, Liu N, et al. Surfaces and Interfaces, 2022, 32, 102100.
34 Liu S, Wang Y, Tang X, et al. Journal of Materials Engineering and Performance, 2024, 33(3), 1349.
35 Zhao S, Peng Y, Liu C H, et al. Chemical Journal of Chinese Universities-Chinese, 2023, 44(12), 20230409.
36 Wu C Y, Huang J J, Li X G, et al. Journal of Harbin Institute of Technology, 2021, 53(7), 1 (in Chinese).
吴春亚, 黄俊杰, 李曦光, 等. 哈尔滨工业大学学报, 2021, 53(7), 1.
37 Li H, Tu S H, Tu H Y, et al. Chemical Engineering Journal, 2024, 483, 149319.
38 Ren F Y, Tao F R, Yang T T, et al. Progress in Organic Coatings, 2024, 191, 108442.
39 Xu Y J, Hou M H, Wang J. ACS Applied Materials & Interfaces, 2024, 16(3), 3978.
40 Zhang L L, Ma W C, Liu Y C, et al. Journal of Thermal Spray Technology, 2024, 33, 1694.
41 Wang B, Gui L, Cai R, et al. Surface & Coatings Technology, 2024, 478, 130454.
42 Rahimi S, Azizian S, Tahzibi H. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 695, 134287.
43 Zhang M, Zhou T, Li H, et al. Applied Surface Science, 2023, 623, 157085.
44 Wang X, Li X. Materials Today Communications, 2024, 38, 107759.
45 Wang X, Li X. Separation and Purification Technology, 2024, 337, 126467.
46 Zhang L L, Ma W C, Liu Y C, et al. Journal of Thermal Spray Technology, 2024, 33(5), 1694.
47 Dai Q, Chen L, Pan J, et al. Friction, 2024, 12(2), 291.
48 Tang W, Zhang H, Hess D W, et al. ACS Applied Materials & Interfaces, 2024, 16(33), 44077.
49 Wu Y T, Wang B, Wang X. Surface Technology, 2023, 52(11), 95 (in Chinese).
吴银涛, 王波, 王潇. 表面技术, 2023, 52(11), 95.
50 He J M, He J, Yuan M J, et al. Chemical Industry and Engineering Progress, 2019, 38(7), 3013 (in Chinese).
何金梅, 何姣, 袁明娟, 等. 化工进展, 2019, 38(7), 3013.
51 Zhang Y Z, Li B, Jia B B, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(10), 3299 (in Chinese).
张跃忠, 李斌, 贾兵兵, 等. 中国有色金属学报, 2023, 33(10), 3299.
52 Wang Z Y, Xing Z G, Wang H D, et al. Journal of Mechanical Engineering, 2022, 58(1), 124 (in Chinese).
王志远, 邢志国, 王海斗, 等. 机械工程学报, 2022, 58(1), 124.
53 Young T. Proceedings of the Royal Society B:Biological Sciences, 1832, 1, 171.
54 Furmidge C G L. Journal of Colloid Science, 1962, 17(4), 309.
55 Nosonovsky M, Bhushan B. Current Opinion in Colloid & Interface Science, 2009, 14(4), 270.
56 Shirtcliffe N J, McHale G, Atherton S, et al. Advances in Colloid and Interface Science, 2010, 161(1), 124.
57 Wang B, Feng J, Gao C. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 259(1), 1.
58 Wenzel R N. Industrial & Engineering Chemistry, 1936, 28(8), 988.
59 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 546.
60 Zhong X, Xie S, Guo Z. Advanced Science, 2023, 11(10), 2305961.
61 Liu H, Liu D, Li P, et al. Materials Letters, 2023, 340, 134182.
62 Lyu P Y, Xue Y H, Duan H L. Advances in Mechanics, 2016, 46(1), 201604 (in Chinese).
吕鹏宇, 薛亚辉, 段慧玲. 力学进展, 2016, 46(1), 201604.
63 Huang Y W, Liu W Q, Luo G J. Polymer Materials Science & Engineering, 2008, 24(11), 13 (in Chinese).
黄月文, 刘伟区, 罗广建. 高分子材料科学与工程, 2008, 24(11), 13.
64 Nishino T, Meguro M, Nakamae K, et al. Langmuir, 1999, 15(13), 4321.
65 Costa V L D, Simões R M S. Journal of Materials Science, 2022, 57(24), 11443.
66 Shafiq F, Liu C, Zhou H, et al. Chemosphere, 2024, 348, 140651.
67 Zhang L, Zhang M, Gao J, et al. Social Science Research Network, 2023, 346, 134526.
68 Lyu D, Li M, Zhang W. Cailiao Daobao/Materials Reports, 2023, 37(4), 21060116.
69 Sulym I, Goncharuk O, Storozhuk L, et al. Social Science Research Network, 2023, 667, 160405.
70 Zhang Y J, Liu J J, Xie Y M, et al. Microfluidics and Nanofluidics, 2023, 28(2), 8.
71 Latthe S S, Demirel A L. Polymer Chemistry, 2013, 4(2), 246.
72 Zang D L, Liu F, Zhang M, et al. Chemical Engineering Journal, 2015, 262, 210.
73 Ren M, Hu X, Li Y S, et al. Soft Matter, 2019, 15(38), 7678.
74 Fu J J, Liu C, Song X R. Chinese Journal of Lasers, 2024, 51(20), 2002204 (in Chinese).
付佳俊, 刘超, 宋昕蓉, 等. 中国激光, 2024, 51(20), 2002204.
75 Wang X Q, Meng J W, Cheng Z Y, et al. Journal of Forestry Engineering, 2020, 5(3), 13 (in Chinese).
王小青, 孟军旺, 程志泳, 等. 林业工程学报, 2020, 5(3), 13.
76 Sun J T. Material Sciences, 2024, 14(3), 319 (in Chinese).
孙俊涛. 材料科学, 2024, 14(3), 319.
77 Guo Y G, Zhang X, Geng T, et al. China Surface Engineering, 2018, 31(5), 63 (in Chinese).
郭永刚, 张鑫, 耿铁, 等. 中国表面工程, 2018, 31(5), 63.
78 Wang D, Sun Q, Hokkanen M J, et al. Nature, 2020, 582(7810), 55.
79 Zhong T, Liu C, Zhang Y M, et al. Electroplating & Finishing, 2024, 43(2), 27 (in Chinese).
钟涛, 刘超, 张艳梅, 等. 电镀与涂饰, 2024, 43(2), 27.
80 Wang L, Liu K, Yin M, et al. Journal of Sol-Gel Science and Technology, 2024, 109(3), 835.
81 Zhang Y, Gong X. Giant, 2023, 14, 100157.
82 Li K Q, Wu W J, Xiang J M, et al. Synthetic Materials Aging and Application, 2021, 50(4), 117 (in Chinese).
李坤泉, 吴文剑, 向佳敏, 等. 合成材料老化与应用, 2021, 50(4), 117.
83 Bormashenko E, Pogreb R, Whyman G, et al. Langmuir, 2007, 23(12), 6501.
84 Papadopoulos P, Mammen L, Deng X, et al. Proceedings of the National Academy of Sciences, 2013, 110(9), 3254.
85 Yao X, Chen Q, Xu L, et al. Advanced Functional Materials, 2010, 20(4), 656.
86 Qasim M, Ali A, Alnaser A. RSC Advances, 2024, 14(29), 20426.
87 Tian N, Li B, Wei J, et al. Journal of Materials Research and Technology, 2024, 29, 864.
88 Xing L, Qi H, Jiang M, et al. Separation and Purification Technology, 2025, 353, 128317.
89 Chen X, Sun S, Wang D, et al. Tribology International, 2024, 195, 109637.
90 Yu J, Shang Q, Zhang M, et al. Progress in Organic Coatings, 2024, 195, 108661.
91 Zhou L, Zhang H, Ju G, et al. Composites Science and Technology, 2023, 243, 110244.
92 Cui X, Duan S, Guo J, et al. Surfaces and Interfaces, 2023, 38, 102806.
93 Gu W, Liu R, Zhang Y, et al. Construction and Building Materials, 2024, 411, 134573.
94 Masood M T, Heredia-Guerrero J A, Ceseracciu L, et al. Chemical Engineering Journal, 2017, 322, 10.
95 Qin X, Kong L, Wang J, et al. Chemical Engineering Journal, 2024, 488, 150928.
96 Zhou P, Zhu Z, She W. Chemical Engineering Journal, 2024, 495, 153488.
97 He P, Qu J, Li S, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 701, 134858.
98 Choi Y J, Ko J H, Jin S W, et al. Surfaces and Interfaces, 2024, 46, 104099.
99 Yang L, Luo S, Zheng L, et al. Surface and Coatings Technology, 2024, 480, 130622.
100 Liu X, Teng R, Fu C, et al. ACS Applied Materials & Interfaces, 2024, 16(28), 37111.
101 Sun C, Dai X, Guo Z. Langmuir, 2024, 40(28), 14697.
102 Wu X, Han Z, Wang Y, et al. Surfaces, 2024, 7(2), 225.
103 Wei H, Luo H, Fan W, et al. ACS Applied Materials & Interfaces, 2024, 16(27), 35613.
104 Yang T, Lu Q, Ren F, et al. ACS Applied Nano Materials, 2024, 7(12), 14737.
105 Zhang H, Bu X, Li W, et al. Advanced Materials, 2022, 34(31), 2203792.
106 Wei Y J. Acta Metallurgica Sinica, 2014, 50(2), 183 (in Chinese).
魏宇杰. 金属学报, 2014, 50(2), 183.
107 Rafiee R, Zehtabzadeh H, Amini M R. Additive Manufacturing, 2024, 83, 104055.
108 Wang Y, Zhou X, Yin M, et al. Langmuir, 2021, 37(27), 8129.
109 Ji M, Li F, Li J, et al. Progress in Organic Coatings, 2024, 190, 108364.
110 Chen G, Dai Z, Ding S, et al. Chemical Engineering Journal, 2022, 432, 134400.
111 Davis A, Surdo S, Caputo G, et al. ACS Applied Materials & Interfaces, 2018, 10(3), 2907.
112 Zhou J, Zhang Z, Yu X, et al. Applied Physics A, 2019, 125(6), 439.
113 Jiang R, Li Y, Chao S, et al. ACS Applied Materials & Interfaces, 2023, 15(44), 52000.
114 Liu X, Zhou Z, Chen M, et al. Coatings, 2024, 14(4), 463.
115 Yu Y, Dong Y, Ning H, et al. Surface and Coatings Technology, 2023, 465, 129564.
116 Zhu K, Yang S, Jiang H, et al. Carbon, 2024, 218, 118770.
[1] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[2] 梁卓悦, 余波, 蔡盛源, 解威威. 基于材料成本与碳排放成本最小化的低碳混凝土配合比优化设计方法[J]. 材料导报, 2025, 39(14): 23120180-6.
[3] 王长龙, 付兴帅, 杨彩霞, 张凯帆, 白云翼, 路璐, 高占须, 郑永超, 刘治兵, 翟玉新, 刘枫. 钒钛铁尾矿制备矿山修复混凝土及性能研究[J]. 材料导报, 2025, 39(14): 24050044-6.
[4] 管焓宇, 张登宇, 欧阳金平, 张伟强, 刘志勇. 高性能水性环氧涂层及涂层钢筋应用研究进展[J]. 材料导报, 2025, 39(13): 24080081-10.
[5] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[6] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[7] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[8] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[9] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[10] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[11] 赵增丰, 蒲紫盈, 林璨, 肖建庄, 姚磊, 姬宸源, 刘雅婕. 免烧陶粒及陶粒混凝土性能研究进展[J]. 材料导报, 2024, 38(20): 23100019-13.
[12] 于乐乐, 王爱国, 仲小凡, 刘开伟, 潘耀辉, 肖必华, 孙道胜. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报, 2024, 38(20): 23080244-9.
[13] 褚洪岩, 史文芳, 王群, 蒋金洋. 采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究[J]. 材料导报, 2024, 38(19): 23070076-7.
[14] 杨尊, 李碧雄, 张治博, 李梁慧. 高钛矿渣在水泥混凝土中的研究应用进展[J]. 材料导报, 2024, 38(18): 22120226-9.
[15] 王家滨, 张凯峰, 郑康华, 符梦涛. 完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理[J]. 材料导报, 2024, 38(18): 23050184-11.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed