Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24100041-10    https://doi.org/10.11896/cldb.24100041
  高分子与聚合物基复合材料 |
基于微纳结构的光热疏水材料及其防结冰性能
李梦1,*, 潘梦瑶2, 杨朝琨1, 吕双祺1, 赵欣1
1 中国民用航空飞行学院航空工程学院,四川 广汉 618307
2 电子科技大学基础与前沿研究院,成都 611731
Research Progress on the Photothermal Hydrophobic Materials Based on Micro-Nano Structures and Their Anti-icing Properties
LI Meng1,*, PAN Mengyao2, YANG Chaokun1, LYU Shuangqi1, ZHAO Xin1
1 College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan 618307, Sichuan, China
2 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology, Chengdu 611731, China
下载:  全 文 ( PDF ) ( 25677KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 全球气候变化导致的结冰问题对多个行业构成挑战,而传统的防结冰技术存在效率低下、能耗高和环境污染等问题。微纳结构光热疏水材料因其优异的光学吸收和热转换能力以及独特的表面疏水性质,为解决这些问题提供了新思路。本文综述了基于微纳结构的光热疏水材料在防结冰方向的研究进展,介绍了这类材料的防结冰机理、制备方法和性能优化途径,探讨了基于微纳结构的光热疏水材料在不同应用场景下的防结冰性能。同时,指出了该领域存在的挑战,并对未来的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李梦
潘梦瑶
杨朝琨
吕双祺
赵欣
关键词:  光热疏水材料  微纳结构  防结冰  表面性能    
Abstract: The ice formation issues arising from global climate change pose challenges across multiple industries. Conventional anti-icing technologies often suffer low efficiency, high energy consumption, and environmental pollution. Photothermal hydrophobic materials with micro-nano structures (PHMs-MNS) present innovative solutions to this challenge due to their exceptional optical absorption, heat conversion capabilities, and distinctive surface water transport characteristics. The research progress of PHMs-MNS in terms of their anti-icing application is reviewed in this paper. The mechanisms of ice prevention, fabrication methods, and pathways for performance optimization of PHMs-MNS are introduced. The anti-icing performance of PHMs-MNS in different application scenarios is discussed as well. Additionally, the challenges and the perspective on future development directions in this field are provided.
Key words:  photothermal hydrophobic material    micro-nano structure    anti-icing    surface property
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TB34  
基金资助: 四川省自然科学基金(2022NSFSC1885)
通讯作者:  * 李梦,中国民用航空飞行学院航空工程学院教授、硕士研究生导师。目前主要从事航空功能材料、机务工程等方面的研究工作。limeng@cafuc.edu.cn   
引用本文:    
李梦, 潘梦瑶, 杨朝琨, 吕双祺, 赵欣. 基于微纳结构的光热疏水材料及其防结冰性能[J]. 材料导报, 2025, 39(14): 24100041-10.
LI Meng, PAN Mengyao, YANG Chaokun, LYU Shuangqi, ZHAO Xin. Research Progress on the Photothermal Hydrophobic Materials Based on Micro-Nano Structures and Their Anti-icing Properties. Materials Reports, 2025, 39(14): 24100041-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100041  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24100041
1 Neinhuis C, Barthlott W. Annals of Botany, 1997, 6, 667.
2 Fresnais J, Chapel J P, Poncin-Epaillard F. Surface & Coatings Technology, 2006, 200(18-19), 5296.
3 Li X, Shao J, Ding Y, et al. Applied Surface Science, 2014, 307, 365.
4 Xia D, Brueck S R J. Nano Letters, 2008, 8(9), 2819.
5 Zhang Q B, Xu D, Hung T F, et al. Nanotechnology, 2013, 24, 065602.
6 Li S, Li H, Wang X, et al. Journal of Physical Chemistry B, 2002, 106(36), 9274.
7 Li M, Zhai J, Liu H, et al. Journal of Physical Chemistry B, 2003, 107(37), 9954.
8 Wang S, Feng L, Jiang L. Advanced Materials, 2006, 18(6), 767.
9 Mockenhaupt B, Ensikat H, Spaeth M, et al. Langmuir, 2008, 24(23), 13591.
10 Lin C, Zhong M, Fan P, et al. Chinese Journal of Lasers, 2014, 41(9), 115(in Chinese).
林澄, 钟敏霖, 范培迅, 等. 中国激光, 2014, 41(9), 115.
11 Qian F X, Jian N W, Sanderson K D. ACS Nano, 2010, 4(4), 2201.
12 Mao, M, Wei, J, Li B, et al. Nature Communication, 2024, 15, 9610.
13 Li S, Xiao P, Chen T. Advanced Materials, 2024, 36(37), 2311453.
14 Zhang W, Gao J, Deng Y, et al. Advanced Functional Materials, 2024, 31(24), 2101068.
15 Liu Z X, Zhou Z, Wu N Y, et al. ACS Nano, 2021, 15(8), 13007.
16 Cao L, Jones A K, Sikka V K, et al. Langmuir, 2009, 25(21), 12444.
17 Wang L, Gong Q, Zhan S, et al. Advanced Materials, 2016, 28(35), 7729.
18 Lv J, Song Y, Jiang L, et al. ACS Nano, 2014, 8(4), 3152.
19 Mishchenko L, Hatton B, Bahadur V, et al. ACS Nano, 2010, 4(12), 7699.
20 Li K, Xu S, Shi W, et al. Langmuir, 2012, 28(29), 10749.
21 Kulinich S A, Farhadi S, Nose K, et al. Langmuir, 2011, 27(1), 25.
22 Jung S, Dorrestijn M, Raps D, et al. Langmuir, 2011, 27(6), 3059.
23 Hao P, Lv C, Zhang X. Applied Physics Letters, 2014, 104(16), 161609.
24 Shen Y, Tao J, Tao H, et al. Langmuir, 2015, 31(39), 10799.
25 Boinovich L, Emelyanenko A M, Korolev V V, et al. Langmuir, 2014, 30(6), 1659.
26 Bahadur V, Mishchenko L, Hatton B, et al. Langmuir, 2011, 27(23), 14143.
27 Boinovich L B, Emelyanenko A M. Mendeleev Communications, 2013, 23(1), 3.
28 Kulinich S A, Farzaneh M. Applied Surface Science, 2009, 255(18), 8153.
29 Sarkar D K, Farzaneh M. Journal of Adhesion Science and Technology, 2009, 23(9), 1215.
30 Wang Y, Xue J, Wang Q, et al. ACS Applied Materials & Interfaces, 2013, 5(8), 3370.
31 Chen J, Liu J, He M, et al. Applied Physics Letters, 2012, 101(11), 111603.
32 Hejazi V, Sobolev K, Nosonovsky M. Scientific Reports, 2013, 3, 2194.
33 Jung S, Tiwari M K, Doan N V, et al. Nature Communications, 2012, 3, 615.
34 Farhadi S, Farzaneh M, Kulinich S A. Applied Surface Science, 2011, 257(14), 6264.
35 Antonini C, Innocenti M. Cold Regions Science and Technology, 2011, 67, 58.
36 Fortin G, Adomou M, Perron J. Sae International Journal of Aerospace, 2011, 38, 281.
37 Waldman R M, Li H, Hu H. In:Conference Record of the 8th AIAA Atmospheric and Space Environments Conference. Washington, D.C., 2006, pp. 13.
38 Mishchenko L, Hatton B, Bahadur V, et al. ACS Nano, 2010, 4(12), 7699.
39 Huang S. Research of ice-melting coatings of anti-icing coatings. Master's Thesis, Wuhan University of Technology, China, 2010 (in Chinese).
黄硕. 融冰型防覆冰涂料的探究. 硕士学位论文, 武汉理工大学, 2010.
40 Varanasi K K, Hsu M, Bhate N, et al. Applied Physics Letters, 2009, 95(9), 94101.
41 Varanasi K K, Deng T, Smith J D, et al. Applied Physics Letters, 2010, 97(23), 234102.
42 Zhang W J, Wang D H, Deng X. Chinese Journal of Applied Chemistry, 2022, 39(1), 142 (in Chinese).
张文婧, 王德辉, 邓旭. 仿生超疏水表面的抗冷凝失效研究进展. 应用化学, 2022, 39(1), 142.
43 Vélez C J R, Hernández C J. International Journal of Thermal Sciences, 2015, 96, 12.
44 Cao Y, Dou J H, Zhao N J, et al. Chemistry of Materials, 2016, 29(2), 718.
45 Hessel C M, Pattani V P, Rasch M, et al. Nano Letters, 2011, 11(6), 2560.
46 Tee S Y, Ye E, Teng C P, et al. Nanoscale, 2021, 13(34), 14268.
47 Seh Z W, Liu S, Low M, et al. Advanced Materials, 2012, 24(17), 2310.
48 Cao J, Sun T, Grattan K T V. Sensors and Actuators B, Chemical, 2014, 195, 332.
49 Granqvist C G, Niklasson G A. Solar Energy Materials and Solar Cells, 2018, 180, 213.
50 Gueymard C A. Solar Energy, 2004, 76(4), 423.
51 Ren H, Tang M, Guan B, et al. Advanced Materials, 2017, 29(38), 1702590.
52 Zhou L, Zhuang S, He C, et al. Nano Energy, 2017, 32, 195.
53 Shi J, Ke S L, Wang F, et al. Chemical Engineering Journal, 2024, 481(1), 148265.
54 Li H G, Xue C H, Jia S T. Fine Chemicals, 2021, 38(5), 934(in Chinese).
李回归, 薛朝华, 贾顺田. 精细化工, 2021, 38(5), 934.
55 Wu S, Du Y, Alsaid Y, et al. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(21), 11240.
56 Xie Z, Wang H, Geng Y, et al. ACS Applied Materials & Interfaces, 2021, 13(40), 48308.
57 Wu C, Geng H, Tan S, et al. Materials Horizons, 2020, 7(8), 2097.
58 Zhang F, Xu D, Zhang D, et al. Chemical Engineering Journal, 2021, 423, 130238.
59 Guo H, Liu M, Xie C, et al. Chemical Engineering Journal, 2020, 402, 126161.
60 Yang C, Li Z, Huang Y, et al. Nano Letters, 2021, 21(7), 3198.
61 Yu B, Sun Z, Liu Y, et al. ACS Applied Material Interfaces, 2021, 13(31), 37609.
62 Xu J, Gong X, Ramakrishna S. Nanotechnology, 2022, 33(32), 325703.
63 Jiang G, Liu Z, Hu J. Advanced Materials Interfaces, 2021, 9(2), 2101704.
64 Xie Z, Wang H, Li M, et al. Chemical Engineering Journal, 2022, 435, 135025.
65 Ma Y Q, Zhang J X, Zhu G N, et al. Materials & Design, 2022, 221, 110897.
66 Liang Z Y, Zhang S Z, Zhang H Q, et al. Paint & Coatings Industry, 2022, 52(4), 18(in Chinese).
梁镇宇, 张世忠, 张宏强, 等. 涂料工业, 2022, 52(4), 18.
67 Xie H, Wei J, Duan S, et al. Chemical Engineering Journal, 2022, 428, 132585.
68 Yin X, Zhang Y, Wang D, et al. Advanced Functional Materials, 2015, 25(27), 4237.
69 Wu B, Cui X, Jiang H, et al. Journal of Colloid and Interface Science, 2021, 590, 301.
70 Xie Z T, Wang H, Zhu X, et al. CIESC Journal, 2021, 72(11), 5840(in Chinese).
谢震廷, 王宏, 朱恂, 等. 化工学报, 2021, 72(11), 5840.
71 Hu J, Jiang G. Surface and Coatings Technology, 2020, 402, 126342.
72 Xie H, Xu W H, Fang C, et al. Soft Matter, 2021, 17(7), 1901.
73 Zhang H, Zhao G, Wu S, et al. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(18), e2100978118.
74 Ma L, Wang J, Zhao F, et al. Composites Science and Technology, 2019, 181, 107696.
75 Ma W, Li Y, Chao C Y, et al. Cell Reports Physical Science, 2021, 2(3), 100384.
76 Dash S, Ruiter J D, Varanasi K K. Science Advances, 2018, 4, t0127
77 Wang M, Yang T, Cao G. Chemical Engineering Journal, 2021, 408, 127316.
78 Zhao W, Xiao L, He X, et al. Optics & Laser Technology, 2021, 141, 107115.
79 Li N, Zhang Y, Zhi H, et al. Chemical Engineering Journal, 2022, 429, 132183.
80 Li Y, Ma W, Kwon Y S, et al. Advanced Functional Materials, 2022, 32(25), 2113297.
81 Jiang G, Chen L, Zhang S, et al. ACS Applied Materials & Interfaces, 2018, 10(42), 36505.
82 Liu Y, Wu Y, Liu Y, et al. ACS Applied Materials & Interfaces, 2020, 12(41), 46981.
83 Mitridis E, Schutzius T M, Sicher A, et al. ACS Nano, 2018, 12(7), 7009.
84 Jin Y, Zhang T, Zhao J, et al. Carbon, 2021, 178, 616.
85 Guo W, Liu C, Li N, et al. Nanoscale Advances, 2022, 4, 2884.
86 Jiang L H, Han M M, Sun J J, et al. Progress in Organic Coatings, 2023, 174, 107282.
[1] 李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
[2] 蔡轩皓, 娄兴, 覃继宁, 周涵. 电致变色材料微纳结构设计及多波段调控应用研究进展[J]. 材料导报, 2024, 38(21): 23100087-7.
[3] 张洋洋, 张群力, 赵庆新, 吴凯, 常钧. 硫铝酸盐水泥水化产物-铝凝胶的研究进展[J]. 材料导报, 2024, 38(14): 23050153-9.
[4] 宋绍意, 黎学明, 杨文静, 何苗, 倪婕, 简燕, 曾旭钟. 可催化高氯酸钠热分解的三维微纳多孔铜的合成[J]. 材料导报, 2023, 37(12): 21080141-6.
[5] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[6] 李明升, 胡海豹, 卢丙举, 秦丽萍, 曹刚, 史瑞琦, 陈效鹏. 典型植物叶面微结构特征与润湿异性研究[J]. 材料导报, 2022, 36(19): 21030149-7.
[7] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[8] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[9] 郑博源, 底月兰, 王海斗, 康嘉杰, 刘韬. 激光加工制备金属基体超疏水表面的研究进展[J]. 材料导报, 2020, 34(23): 23109-23120.
[10] 李彩云, 邢志国, 赵向伟, 王海斗, 李国禄, 石佳东. 强化方法对重载齿轮弯曲疲劳强度影响的研究现状与建议[J]. 材料导报, 2020, 34(21): 21146-21154.
[11] 朱守东, 张继旺, 易科尖, 苏凯新, 李行, 张金鑫. 微粒子喷丸工艺对EA4T车轴钢表面性能和疲劳强度的影响[J]. 材料导报, 2020, 34(14): 14181-14186.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed