Research Progress of MXene-based Electromagnetic Interference Shielding Composites
LI Yanan1,2,*, WANG Kai1, LIU Dejun1, TAN Zhiliang2
1 Beijing Institute of Tracking and Telecommunications Technology, Beijing 100028, China 2 Electromagnetic Environment Effects Key Laboratory, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China
Abstract: The new two-dimensional transition metal carbides and nitrides (MXene) materials have attracted extensive attention in the fields of electromagnetic interference shielding materials due to its high specific surface area, outstanding electrical conductivity, and large dielectric constant. Limited by the characteristics of two-dimensional nanomaterials that are easy to agglomerate and difficult to disperse, it is difficult for MXene to fully utilize its excellent performance. Therefore the development of high-performance MXene-based composite materials and the construction of efficient conductive network structures have become key factors in achieving perfect electromagnetic interference shielding performance. In this paper, the material characteristics of MXene are briefly introduced. The research progress of MXene-based composites in the field of electromagnetic interference shielding is elaborated in detail from the aspects of internal multi-interface structure, surface microstructure design and preparation methods of MXene-based composites. The application of MXene-based composites in the field of electromagnetic interference shielding is introduced. Finally the main problems in the preparation, electromagnetic interference shielding performance and application of MXene-based composites are analyzed, and the future development trends of MXene-based electromagnetic interference shielding materials are discussed.
李亚南, 王凯, 刘得军, 谭志良. MXene基复合材料在电磁屏蔽领域的研究进展[J]. 材料导报, 2025, 39(14): 24080149-11.
LI Yanan, WANG Kai, LIU Dejun, TAN Zhiliang. Research Progress of MXene-based Electromagnetic Interference Shielding Composites. Materials Reports, 2025, 39(14): 24080149-11.
1 Wang X Y, Liao S Y, Huang H, et al. Small Methods, 2023, 7(4), 2201694. 2 Yang S, Yang R, Lin Z, et al. Journal of Materials Chemistry A, 2022, 10(44), 23570. 3 Lei Z, Tian D, Liu X, et al. Chemical Engineering Journal, 2021, 424, 130365. 4 Armin V M, Johanna R, Gogotsi Y. Science, 2021, 372(11), 1165. 5 Pogorielov M, Smyrnova K, Kyrylenko S, et al. Nanomaterials, 2021, 11(12), 3412. 6 Ronchi R M, Arantes J T, Santos S F. Ceramics International, 2019, 45(15), 18167. 7 Wang J F, Kang H, Cheng Z J, et al. Journal of Materials Engineering, 2021, 49(6), 14 (in Chinese). 王敬枫, 康辉, 成中军, 等. 材料工程, 2021, 49(6), 14. 8 Palisaitis J, Persson I, Halim J, et al. Nanoscale, 2018, 10(23), 10850. 9 Alhabeb M, Maleski K, Anasori B, et al. Chemistry of Materials, 2017, 29(18), 7633. 10 Lipatov A, Alhabeb M, Lukatskaya M R, et al. Advanced Electronic Materials, 2016, 2(12), 1600255. 11 Cao Y G, Miao B J, Bai Z M, et al. Transactions of Materials and Heat Treatment, 2022, 43(8), 13 (in Chinese). 曹燕格, 苗保记, 白致铭, 等. 材料热处理学报, 2022, 43(8), 13. 12 Liu J, Liu Z, Zhang H, et al. Advanced Electronic Materials, 2020, 6(1), 1901094. 13 Yin G, Wang Y, Wang W, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 601, 125047. 14 Rajavel K, Hu Y, Zhu P, et al. Chemical Engineering Journal, 2020, 399, 125791. 15 Zhou Y, Wang Y H, Wang Y J, et al. ACS Applied Materials & Interfaces, 2021, 13(47), 56485. 16 Peng M, Dong M, Wei W, et al. Carbon, 2021, 179, 400. 17 Han M K, Yin X W, Wu H, et al. ACS Applied Materials & Interfaces, 2016, 8, 21011. 18 Wang L, Chen L, Song P, et al. Composites Part B:Engineering, 2019, 171, 111. 19 Wang S, Li D, Jiang L, et al. Composites Science and Technology, 2022, 221, 109337. 20 Song P, Ma Z, Qiu H, et al. Nano-Micro Letters, 2022, 14, 51. 21 Luo J Q, Zhao S, Zhang H B, et al. Composites Science and Technology, 2019, 182, 107754. 22 Ling Z, Chang E R, Zhao M Q, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47), 16676. 23 Guo Z Z. Structural construction and performance research of cellulose nanofiber-based electromagnetic interference shielding composite films. Ph. D. Thesis, Xi'an University of Technology, China, 2023 (in Chinese). 郭铮铮. 纤维素纳米纤维基电磁屏蔽复合薄膜的结构构筑及性能研究. 博士学位论文, 西安理工大学, 2023. 24 Liu H B, Fu R L, Su X Q, et al. Materials Reports, 2021, 35(13), 13067 (in Chinese). 刘后宝, 傅仁利, 苏新清, 等. 材料导报, 2021, 35(13), 13067. 25 Mei T, Ran Y, Cai X R, et al. Acta Materiae Compositae Sinica, 2024, 41(5), 2280 (in Chinese). 梅婷, 冉娅, 蔡雄睿, 等. 复合材料学报, 2024, 41(5), 2280. 26 Li L, Cheng Q F. Journal of Inorganic Materials, 2024, 39(2), 153 (in Chinese). 李雷, 程群峰. 无机材料学报, 2024, 39(2), 153. 27 Lim K R G, Shekhirev M, Wyatt B C, et al. Nature Synthesis, 2022, 1(8), 601. 28 Ba Z C, Liang D X, Xie Y J. Chemical Journal of Chinese Universities, 2021, 42(4), 1225 (in Chinese). 巴智晨, 梁大鑫, 谢延军. 高等学校化学学报, 2021, 42(4), 1225. 29 Sun B, Sun S, He P, et al. Chemical Engineering Journal, 2021, 416, 129083. 30 Wang T, Kong W W, Yu W C, et al. Nano-Micro Letters, 2021, 13, 162. 31 Sun R H, Zhang H B, Liu J, et al. Advanced Functional Materials, 2017, 27(45), 1702807. 32 Ma W, Cai W, Chen W, et al. Chemical Engineering Journal, 2021, 425, 131699. 33 Song Q S, Chen B X, Zhou Z H, et al. Science China Materials, 2021, 64(6), 1437. 34 Zhao S, Zhang H B, Luo J Q, et al. ACS Nano, 2018, 12(11), 11193. 35 Wu X, Han B, Zhang H B, et al. Chemical Engineering Journal, 2020, 381, 122622. 36 Liang C B, Gu Z J, Zhang Y L, et al. Nano-Micro Letters, 2021, 13, 181. 37 Ba K X, Zhang M Y, Wang X D, et al. Diamond and Related Materials, 2023, 131, 109585. 38 Chen Q, Fan B, Zhang Q, et al. Ceramics International, 2022, 8(10), 14578. 39 Jia X, Shen B, Zhang L, et al. Chemical Engineering Journal, 2021, 405, 126927. 40 Jiang Y Q. Construction and electromagnetic interference shielding performance of MXene/wood-based composites. Master's Thesis, Zhejiang A & F University, China, 2022 (in Chinese). 蒋英秋. MXene/木质基复合材料的构建及其电磁屏蔽性能研究. 硕士学位论文, 浙江农林大学, 2022. 41 Zhang Y, Xu M K, Wang Z, et al. Nano Research, 2022, 15(6), 4916. 42 Yu D R. Research on electrochromic properties of vanadium pentoxide-based composite films. Master's Thesis, Wuhan University of Technology, China, 2024 (in Chinese). 于丹睿. 五氧化二钒基复合薄膜的电致变色性能研究. 硕士学位论文, 武汉理工大学, 2024. 43 Song P, Liu B, Qiu H, et al. Composites Communications, 2021, 24, 100653. 44 Wang Y, Qi Q B, Yin G, et al. ACS Applied Materials & Interfaces, 2021, 13, 21831. 45 Xie F, Gao K, Zhuo L H, et al. Composites Part A:Applied Science and Manufacturing, 2022, 160, 107049. 46 Liang W H, Wu J T, Zhang S, et al. Nano Research, 2023, 17(3), 2070. 47 Li T T. Study on preparation methods and electromagnetic interference shielding property of microcellular PMMA/MWCNTs composites. Ph. D. Thesis, Shandong University, China, 2019 (in Chinese). 李婷婷. PMMA/MWCNTs微孔发泡复合材料制备方法及EMI SE研究. 博士学位论文, 山东大学, 2019. 48 Yun T, Kim H, Iqbal A, et al. Advanced Materials, 2020, 32(9), 1906769. 49 Cao W T, Chen F F, Zhu Y J, et al. ACS Nano, 2018, 12(5), 4583. 50 Liu R T, Miao M, Li Y H, et al. ACS Applied Materials & Interfaces, 2018, 10(51), 44787. 51 Liang W H, Wu J T, Zhang S, et al. Nano Research, 2024, 17(3), 2070. 52 Jia X C. Fabrication and performance regulation of MXene/polymer composites for electromagnetic interference shielding. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2022 (in Chinese). 贾锡琛. MXene/聚合物复合电磁屏蔽材料的构建与性能调控. 博士学位论文, 中国科学院大学, 2022. 53 Xu Y, Yang Y, Yan D X, et al. ACS Applied Materials & Interfaces, 2018, 10 (22), 19143. 54 Yang J, Liao X, Wang G, et al. Chemical Engineering Journal, 2020, 390, 124589. 55 Xue B, Li Y, Cheng Z, et al. Nano-Micro Letters, 2021, 14, 16. 56 Ma M, Tao W T, Liao X J, et al. Chemical Engineering Journal, 2023, 452, 139471. 57 Zhang C, Wu Z, Xu C, et al. Small, 2022, 18, 2104380. 58 Jiang X W, Wang Q, Song L M, et al. Carbon Energy, 2024, 6, e502. 59 Zhu X, Qian X, Hao M Y, et al. Journal of Alloys and Compounds, 2024, 989, 174440. 60 Wen C Y, Li X, Zhang R X, et al. ACS Nano, 2022, 16(1), 1150. 61 Tang X H, Li J, Wang Y, et al. Composites Part B:Engineering, 2020, 196, 108121. 62 Tao J R, Tang X H, He Q M, et al. Composites Science and Technology, 2022, 229, 109715. 63 Ying M, Zhao R, Hu X, et al. Angewandte Chemie, 2022, 61(16), e202201323. 64 Lipton J, Röhr J A, Dang V, et al. Matter, 2020, 3(2), 546. 65 Tao D C, Wen X, Yang C G, et al. Nano-Micro Letters, 2024, 16, 236. 66 Dai Y, Wu X, Li L, et al. Journal of Materials Chemistry A, 2022, 10(21), 11375. 67 Xing Y. Research on Terahertz shielding materials based on MXene. Master's Thesis, University of Electronic Science and Technology of China, China, 2022 (in Chinese). 邢杨. 基于MXene的太赫兹屏蔽材料研究. 硕士学位论文, 电子科技大学, 2022. 68 Shao Y, Wei L, Wu X, et al. Nature Communications, 2022, 13, 3223. 69 Liu H, Du C, Liao L, et al. Nature Communications, 2022, 13, 3420. 70 Zhang C J, Mckeon L, Krener M P, et al. Nature Communications, 2019, 10, 1795. 71 Cheng T, Yang X L, Yang S, et al. Advanced Functional Materials, 2022, 33, 2210997. 72 Ma J, Zheng S, Cao Y, et al. Advanced Energy Materials, 2021, 11, 2100746. 73 Wu Y X. Construction of electrically conductive networks of MXene and their polymer composites for electromagnetic interference shielding. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2021 (in Chinese). 吴昕昱. MXene导电网络构筑及其聚合物电磁屏蔽复合材料. 博士学位论文, 北京化工大学, 2021. 74 Kaspar C, Ravoo B J, Wiel W G, et al. Nature, 2021, 594, 345. 75 Han M, Zhang D, Shuck C E, et al. Nature Nano-technology, 2023, 18, 373. 76 Li L L. Study on structure design and performance tunability of two-dimensional transition metal carbide-based electromagnetic interference shielding materials. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2023 (in Chinese). 李禄禄. 二维过渡金属碳化物基电磁屏蔽材料的结构设计与性能调控. 博士学位论文, 北京化工大学, 2023. 77 Shu J C, Cao M S, Zhang M, et al. Advanced Functional Materials, 2020, 30(10), 1908299. 78 Pan F, Shi Y Y, Yang Y, et al. Advanced Materials, 2023, 36(14), e2311135. 79 Chen Y, Li X Y, Qin Y X, et al. Science Advances, 2021, 7(39), 208. 80 Liu L X, Chen W, Zhang H B, et al. Nano-micro Letters, 2022, 14, 111.