Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24080149-11    https://doi.org/10.11896/cldb.24080149
  无机非金属及其复合材料 |
MXene基复合材料在电磁屏蔽领域的研究进展
李亚南1,2,*, 王凯1, 刘得军1, 谭志良2
1 北京跟踪与通信技术研究所,北京 100028
2 陆军工程大学石家庄校区电磁环境效应重点实验室,石家庄 050003
Research Progress of MXene-based Electromagnetic Interference Shielding Composites
LI Yanan1,2,*, WANG Kai1, LIU Dejun1, TAN Zhiliang2
1 Beijing Institute of Tracking and Telecommunications Technology, Beijing 100028, China
2 Electromagnetic Environment Effects Key Laboratory, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China
下载:  全 文 ( PDF ) ( 53817KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新型二维过渡金属碳/氮化物(MXene)材料因具有比表面积高、导电性高、介电常数大等优点而成为电磁屏蔽材料的研究热点。由于二维纳米片层制备过程存在易堆叠、分散不均等问题,MXene高效电荷传导网络的形成受到影响,限制了其自身性能优势的发挥。因此研制高性能MXene基复合材料、构筑高效导电网络结构成为实现其良好电磁屏蔽性能的关键因素。本文简要介绍了MXene的材料特性,从MXene基复合材料的内部多界面结构、表面微结构的设计及制备方法等方面详细阐述了MXene基复合材料在电磁屏蔽领域的研究进展,并系统介绍了其在电磁屏蔽领域的应用。最后,分析了MXene基复合材料在制备、电磁屏蔽性能及应用中存在的主要问题,对未来MXene基电磁屏蔽材料的发展方向及趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚南
王凯
刘得军
谭志良
关键词:  MXene  复合材料  电磁屏蔽  性能调控  结构设计  屏蔽效能    
Abstract: The new two-dimensional transition metal carbides and nitrides (MXene) materials have attracted extensive attention in the fields of electromagnetic interference shielding materials due to its high specific surface area, outstanding electrical conductivity, and large dielectric constant. Limited by the characteristics of two-dimensional nanomaterials that are easy to agglomerate and difficult to disperse, it is difficult for MXene to fully utilize its excellent performance. Therefore the development of high-performance MXene-based composite materials and the construction of efficient conductive network structures have become key factors in achieving perfect electromagnetic interference shielding performance. In this paper, the material characteristics of MXene are briefly introduced. The research progress of MXene-based composites in the field of electromagnetic interference shielding is elaborated in detail from the aspects of internal multi-interface structure, surface microstructure design and preparation methods of MXene-based composites. The application of MXene-based composites in the field of electromagnetic interference shielding is introduced. Finally the main problems in the preparation, electromagnetic interference shielding performance and application of MXene-based composites are analyzed, and the future development trends of MXene-based electromagnetic interference shielding materials are discussed.
Key words:  MXene    composites    electromagnetic interference shielding    property manipulation    structure design    shielding effectiveness
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TB33  
通讯作者:  * 李亚南,博士,工程师。目前主要研究领域为电磁脉冲防护技术与材料。lynang@126.com   
引用本文:    
李亚南, 王凯, 刘得军, 谭志良. MXene基复合材料在电磁屏蔽领域的研究进展[J]. 材料导报, 2025, 39(14): 24080149-11.
LI Yanan, WANG Kai, LIU Dejun, TAN Zhiliang. Research Progress of MXene-based Electromagnetic Interference Shielding Composites. Materials Reports, 2025, 39(14): 24080149-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080149  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24080149
1 Wang X Y, Liao S Y, Huang H, et al. Small Methods, 2023, 7(4), 2201694.
2 Yang S, Yang R, Lin Z, et al. Journal of Materials Chemistry A, 2022, 10(44), 23570.
3 Lei Z, Tian D, Liu X, et al. Chemical Engineering Journal, 2021, 424, 130365.
4 Armin V M, Johanna R, Gogotsi Y. Science, 2021, 372(11), 1165.
5 Pogorielov M, Smyrnova K, Kyrylenko S, et al. Nanomaterials, 2021, 11(12), 3412.
6 Ronchi R M, Arantes J T, Santos S F. Ceramics International, 2019, 45(15), 18167.
7 Wang J F, Kang H, Cheng Z J, et al. Journal of Materials Engineering, 2021, 49(6), 14 (in Chinese).
王敬枫, 康辉, 成中军, 等. 材料工程, 2021, 49(6), 14.
8 Palisaitis J, Persson I, Halim J, et al. Nanoscale, 2018, 10(23), 10850.
9 Alhabeb M, Maleski K, Anasori B, et al. Chemistry of Materials, 2017, 29(18), 7633.
10 Lipatov A, Alhabeb M, Lukatskaya M R, et al. Advanced Electronic Materials, 2016, 2(12), 1600255.
11 Cao Y G, Miao B J, Bai Z M, et al. Transactions of Materials and Heat Treatment, 2022, 43(8), 13 (in Chinese).
曹燕格, 苗保记, 白致铭, 等. 材料热处理学报, 2022, 43(8), 13.
12 Liu J, Liu Z, Zhang H, et al. Advanced Electronic Materials, 2020, 6(1), 1901094.
13 Yin G, Wang Y, Wang W, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 601, 125047.
14 Rajavel K, Hu Y, Zhu P, et al. Chemical Engineering Journal, 2020, 399, 125791.
15 Zhou Y, Wang Y H, Wang Y J, et al. ACS Applied Materials & Interfaces, 2021, 13(47), 56485.
16 Peng M, Dong M, Wei W, et al. Carbon, 2021, 179, 400.
17 Han M K, Yin X W, Wu H, et al. ACS Applied Materials & Interfaces, 2016, 8, 21011.
18 Wang L, Chen L, Song P, et al. Composites Part B:Engineering, 2019, 171, 111.
19 Wang S, Li D, Jiang L, et al. Composites Science and Technology, 2022, 221, 109337.
20 Song P, Ma Z, Qiu H, et al. Nano-Micro Letters, 2022, 14, 51.
21 Luo J Q, Zhao S, Zhang H B, et al. Composites Science and Technology, 2019, 182, 107754.
22 Ling Z, Chang E R, Zhao M Q, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47), 16676.
23 Guo Z Z. Structural construction and performance research of cellulose nanofiber-based electromagnetic interference shielding composite films. Ph. D. Thesis, Xi'an University of Technology, China, 2023 (in Chinese).
郭铮铮. 纤维素纳米纤维基电磁屏蔽复合薄膜的结构构筑及性能研究. 博士学位论文, 西安理工大学, 2023.
24 Liu H B, Fu R L, Su X Q, et al. Materials Reports, 2021, 35(13), 13067 (in Chinese).
刘后宝, 傅仁利, 苏新清, 等. 材料导报, 2021, 35(13), 13067.
25 Mei T, Ran Y, Cai X R, et al. Acta Materiae Compositae Sinica, 2024, 41(5), 2280 (in Chinese).
梅婷, 冉娅, 蔡雄睿, 等. 复合材料学报, 2024, 41(5), 2280.
26 Li L, Cheng Q F. Journal of Inorganic Materials, 2024, 39(2), 153 (in Chinese).
李雷, 程群峰. 无机材料学报, 2024, 39(2), 153.
27 Lim K R G, Shekhirev M, Wyatt B C, et al. Nature Synthesis, 2022, 1(8), 601.
28 Ba Z C, Liang D X, Xie Y J. Chemical Journal of Chinese Universities, 2021, 42(4), 1225 (in Chinese).
巴智晨, 梁大鑫, 谢延军. 高等学校化学学报, 2021, 42(4), 1225.
29 Sun B, Sun S, He P, et al. Chemical Engineering Journal, 2021, 416, 129083.
30 Wang T, Kong W W, Yu W C, et al. Nano-Micro Letters, 2021, 13, 162.
31 Sun R H, Zhang H B, Liu J, et al. Advanced Functional Materials, 2017, 27(45), 1702807.
32 Ma W, Cai W, Chen W, et al. Chemical Engineering Journal, 2021, 425, 131699.
33 Song Q S, Chen B X, Zhou Z H, et al. Science China Materials, 2021, 64(6), 1437.
34 Zhao S, Zhang H B, Luo J Q, et al. ACS Nano, 2018, 12(11), 11193.
35 Wu X, Han B, Zhang H B, et al. Chemical Engineering Journal, 2020, 381, 122622.
36 Liang C B, Gu Z J, Zhang Y L, et al. Nano-Micro Letters, 2021, 13, 181.
37 Ba K X, Zhang M Y, Wang X D, et al. Diamond and Related Materials, 2023, 131, 109585.
38 Chen Q, Fan B, Zhang Q, et al. Ceramics International, 2022, 8(10), 14578.
39 Jia X, Shen B, Zhang L, et al. Chemical Engineering Journal, 2021, 405, 126927.
40 Jiang Y Q. Construction and electromagnetic interference shielding performance of MXene/wood-based composites. Master's Thesis, Zhejiang A & F University, China, 2022 (in Chinese).
蒋英秋. MXene/木质基复合材料的构建及其电磁屏蔽性能研究. 硕士学位论文, 浙江农林大学, 2022.
41 Zhang Y, Xu M K, Wang Z, et al. Nano Research, 2022, 15(6), 4916.
42 Yu D R. Research on electrochromic properties of vanadium pentoxide-based composite films. Master's Thesis, Wuhan University of Technology, China, 2024 (in Chinese).
于丹睿. 五氧化二钒基复合薄膜的电致变色性能研究. 硕士学位论文, 武汉理工大学, 2024.
43 Song P, Liu B, Qiu H, et al. Composites Communications, 2021, 24, 100653.
44 Wang Y, Qi Q B, Yin G, et al. ACS Applied Materials & Interfaces, 2021, 13, 21831.
45 Xie F, Gao K, Zhuo L H, et al. Composites Part A:Applied Science and Manufacturing, 2022, 160, 107049.
46 Liang W H, Wu J T, Zhang S, et al. Nano Research, 2023, 17(3), 2070.
47 Li T T. Study on preparation methods and electromagnetic interference shielding property of microcellular PMMA/MWCNTs composites. Ph. D. Thesis, Shandong University, China, 2019 (in Chinese).
李婷婷. PMMA/MWCNTs微孔发泡复合材料制备方法及EMI SE研究. 博士学位论文, 山东大学, 2019.
48 Yun T, Kim H, Iqbal A, et al. Advanced Materials, 2020, 32(9), 1906769.
49 Cao W T, Chen F F, Zhu Y J, et al. ACS Nano, 2018, 12(5), 4583.
50 Liu R T, Miao M, Li Y H, et al. ACS Applied Materials & Interfaces, 2018, 10(51), 44787.
51 Liang W H, Wu J T, Zhang S, et al. Nano Research, 2024, 17(3), 2070.
52 Jia X C. Fabrication and performance regulation of MXene/polymer composites for electromagnetic interference shielding. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2022 (in Chinese).
贾锡琛. MXene/聚合物复合电磁屏蔽材料的构建与性能调控. 博士学位论文, 中国科学院大学, 2022.
53 Xu Y, Yang Y, Yan D X, et al. ACS Applied Materials & Interfaces, 2018, 10 (22), 19143.
54 Yang J, Liao X, Wang G, et al. Chemical Engineering Journal, 2020, 390, 124589.
55 Xue B, Li Y, Cheng Z, et al. Nano-Micro Letters, 2021, 14, 16.
56 Ma M, Tao W T, Liao X J, et al. Chemical Engineering Journal, 2023, 452, 139471.
57 Zhang C, Wu Z, Xu C, et al. Small, 2022, 18, 2104380.
58 Jiang X W, Wang Q, Song L M, et al. Carbon Energy, 2024, 6, e502.
59 Zhu X, Qian X, Hao M Y, et al. Journal of Alloys and Compounds, 2024, 989, 174440.
60 Wen C Y, Li X, Zhang R X, et al. ACS Nano, 2022, 16(1), 1150.
61 Tang X H, Li J, Wang Y, et al. Composites Part B:Engineering, 2020, 196, 108121.
62 Tao J R, Tang X H, He Q M, et al. Composites Science and Technology, 2022, 229, 109715.
63 Ying M, Zhao R, Hu X, et al. Angewandte Chemie, 2022, 61(16), e202201323.
64 Lipton J, Röhr J A, Dang V, et al. Matter, 2020, 3(2), 546.
65 Tao D C, Wen X, Yang C G, et al. Nano-Micro Letters, 2024, 16, 236.
66 Dai Y, Wu X, Li L, et al. Journal of Materials Chemistry A, 2022, 10(21), 11375.
67 Xing Y. Research on Terahertz shielding materials based on MXene. Master's Thesis, University of Electronic Science and Technology of China, China, 2022 (in Chinese).
邢杨. 基于MXene的太赫兹屏蔽材料研究. 硕士学位论文, 电子科技大学, 2022.
68 Shao Y, Wei L, Wu X, et al. Nature Communications, 2022, 13, 3223.
69 Liu H, Du C, Liao L, et al. Nature Communications, 2022, 13, 3420.
70 Zhang C J, Mckeon L, Krener M P, et al. Nature Communications, 2019, 10, 1795.
71 Cheng T, Yang X L, Yang S, et al. Advanced Functional Materials, 2022, 33, 2210997.
72 Ma J, Zheng S, Cao Y, et al. Advanced Energy Materials, 2021, 11, 2100746.
73 Wu Y X. Construction of electrically conductive networks of MXene and their polymer composites for electromagnetic interference shielding. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2021 (in Chinese).
吴昕昱. MXene导电网络构筑及其聚合物电磁屏蔽复合材料. 博士学位论文, 北京化工大学, 2021.
74 Kaspar C, Ravoo B J, Wiel W G, et al. Nature, 2021, 594, 345.
75 Han M, Zhang D, Shuck C E, et al. Nature Nano-technology, 2023, 18, 373.
76 Li L L. Study on structure design and performance tunability of two-dimensional transition metal carbide-based electromagnetic interference shielding materials. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2023 (in Chinese).
李禄禄. 二维过渡金属碳化物基电磁屏蔽材料的结构设计与性能调控. 博士学位论文, 北京化工大学, 2023.
77 Shu J C, Cao M S, Zhang M, et al. Advanced Functional Materials, 2020, 30(10), 1908299.
78 Pan F, Shi Y Y, Yang Y, et al. Advanced Materials, 2023, 36(14), e2311135.
79 Chen Y, Li X Y, Qin Y X, et al. Science Advances, 2021, 7(39), 208.
80 Liu L X, Chen W, Zhang H B, et al. Nano-micro Letters, 2022, 14, 111.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[3] 刘皓珩, 郭倩如, 田锦, 门杰, 李可洲. 负载MXene纳米片的冻融水凝胶的制备及防治术后胰瘘的研究[J]. 材料导报, 2025, 39(9): 24040053-9.
[4] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[5] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[6] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[7] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[8] 吴焱, 乔英杰, 白成英, 王晓东, 张晓红. 聚合物材料正热膨胀调控研究进展[J]. 材料导报, 2025, 39(7): 23120194-11.
[9] 汤云, 习敏娟, 王许辉, 邓乐淳, 陈强. 吸收主导型Ni/Ni@Ag/EP电磁屏蔽涂层的制备及性能[J]. 材料导报, 2025, 39(6): 24020060-7.
[10] 陈易诚, 涂建勇, 李鑫, 范晓孟. 雷达/红外兼容隐身材料设计原理及研究进展[J]. 材料导报, 2025, 39(6): 23120256-10.
[11] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[12] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[13] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[14] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[15] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed