Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24060040-8    https://doi.org/10.11896/cldb.24060040
  高分子与聚合物基复合材料 |
静电纺丝纤维材料在太阳能海水淡化领域的应用进展
陈飞勇, 刘坤, 李文祚, 陈倩勋, 李淑英*, 宋扬*
山东建筑大学资源与环境创新研究院,济南 250101
Progress of Research into Electrospun Fibrous Materials for Solar-driven Seawater Desalination
CHEN Feiyong, LIU Kun, LI Wenzuo, CHEN Qianxun, LI Shuying*, SONG Yang*
Institute of Resource and Environmental Innovation, Shandong Jianzhu University, Jinan 250101, China
下载:  全 文 ( PDF ) ( 52780KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于淡水短缺的社会现状,清洁高效的太阳能驱动界面蒸发技术已广泛用于海水淡化领域。制备性能优异的光热材料是实现资源可持续利用的关键。目前,人们通过静电纺丝技术成功制备了孔隙率高、比表面积大、空间结构可调的纳米纤维光热膜,有效提升了光热材料在太阳能驱动界面海水蒸发过程中的稳定性和可扩展性。本文首先回顾了静电纺丝技术和光热转换理论的基础研究,并对静电纺丝光热复合纤维材料的制备策略和空间结构分类进行系统的讨论。然后,针对以往报道中鲜少关注的淡水收集装置,本文根据装置的不同设计类型进行了综述。最后,总结静电纺丝技术在太阳能驱动海水淡化领域的制约因素,并对其未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈飞勇
刘坤
李文祚
陈倩勋
李淑英
宋扬
关键词:  太阳能驱动界面蒸发  静电纺丝  纳米纤维膜  海水淡化    
Abstract: In response to the critical shortage of freshwater resources, clean and efficient solar-driven interface evaporation technology has shown pro-mising prospects in seawater desalination. Therefore, the preparation of high quality photothermal materials is particularly important for the sustainable utilization of resources. Electrospinning, a technique for fabricating nanofibrous photothermal materials with high porosity, large surface area, and tunable spatial structures, enhances the stability and scalability of photothermal nanofiber membranes during solar-driven interfacial evaporation. This paper delves into the fundamentals of electrospinning and photothermal conversion theory, analyzing preparation strategies and spatial structure classifications of electrospun photothermal materials. Additionally, it focuses on freshwater collection devices, summarizing various designs to broaden practical applications. While acknowledging limitations, this paper forecasts the future development of electrospinning in solar-driven seawater desalination and provides strategic recommendations for research advancements.
Key words:  solar-driven interfacial evaporation    electrospinning    nanofiber membrane    seawater desalination
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  O631  
基金资助: 山东省重大科技创新工程项目(0031504);山东省科技型中小企业创新能力提升工程项目(2023TSGC027);山东省自然科学基金(ZR2024QB241)
通讯作者:  * 李淑英,博士,山东建筑大学讲师、硕士研究生导师,主要从事静电纺丝功能化纤维膜的制备及应用,太阳能驱动海水淡化、工业废水脱盐和水处理技术等研究。lishuying23@sdjzu.edu.cn
宋扬,博士,山东建筑大学特聘教授,长期专注于高效低成本环境净水材料与技术、废水高级氧化催化材料与工艺、小分子有机物热化学转化反应工程等理论研究和技术开发方面的研究。songyang20@sdjzu.edu.cn   
作者简介:  陈飞勇,日本工程院外籍院士,博士,教授,博士研究生导师,山东建筑大学资源与环境创新研究院院长。长期从事水源地管理与环境保护工程方面的研究。
引用本文:    
陈飞勇, 刘坤, 李文祚, 陈倩勋, 李淑英, 宋扬. 静电纺丝纤维材料在太阳能海水淡化领域的应用进展[J]. 材料导报, 2025, 39(14): 24060040-8.
CHEN Feiyong, LIU Kun, LI Wenzuo, CHEN Qianxun, LI Shuying, SONG Yang. Progress of Research into Electrospun Fibrous Materials for Solar-driven Seawater Desalination. Materials Reports, 2025, 39(14): 24060040-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060040  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24060040
1 Zhou L, Tan Y L, Wang J Y, et al. Nature Photonics, 2016, 10(6), 393.
2 Salehi M. Environment International, 2022, 158, 106936.
3 Elimelech M, Phillip W A. Science, 2011, 333(6043), 712.
4 Malaeb L, Ayoub G M. Desalination, 2011, 267(1), 1.
5 Wang H T. Nature Nanotechnology, 2018, 13(4), 273.
6 Liu X H, Mishra D D, Wang X B, et al. Journal of Materials Chemistry A, 2020, 8(35), 17907.
7 Kanjwal M A, Ghaferi A A. Journal of Environmental Chemical Engineering, 2022, 10(6), 108850.
8 Zhao J H, Liu Z, Low S C, et al. Advanced Fiber Materials, 2023, 5(4), 1318.
9 Chala T F, Wu C M, Chou M H, et al. ACS Applied Materials & Interfaces, 2018, 10(34), 28955.
10 Bai H Y, Fan T T, Guan H S, et al. Composites Communications, 2022, 31, 101104.
11 Lee J K Y, Chen N, Peng S J, et al. Progress in Polymer Science, 2018, 86, 40.
12 Yu Y X, Ma Q Y, Zhang J B, et al. Applied Surface Science, 2020, 512, 145697.
13 Yan G L, Niu H T, Zhao X T, et al. Industrial & Engineering Chemistry Research, 2017, 56(43), 12337.
14 Dong X Y, Li H, Gao L F, et al. Small, 2022, 18(13), 2107156.
15 Liang P P, Liu S, Ding Y D, et al. Chemosphere, 2021, 280, 130719.
16 Li S Y, Guo L F, Xia Y G, et al. Separation and Purification Technology, 2023, 323, 124385.
17 Lv B, Song C W, Liu Y M, et al. Chemosphere, 2022, 309, 136818.
18 Ou K K, Li J B, Hou Y J, et al. Journal of Colloid and Interface Science, 2024, 656, 474.
19 Xu W C, Hu X Z, Zhuang S D, et al. Advanced Energy Materials, 2018, 8(14), 1702884.
20 Zhao J, Huang Q L, Gao S P, et al. Journal of Membrane Science, 2021, 635, 119500.
21 Ju J G, Chen Y F, Huang Y T, et al. Journal of Membrane Science, 2024, 690, 122237.
22 Ju J G, Li Z J, Lv Y, et al. Journal of Membrane Science, 2020, 611, 118420.
23 Wang F Y, Zhao S J, Zhang X Y, et al. Desalination, 2022, 543, 116085.
24 Ding Q, Guan C F, Li H Y, et al. Solar Energy, 2020, 195, 636.
25 Yuan Z P, Zhang X N, Zhang J, et al. Desalination, 2023, 550, 116399.
26 Wu T, Li H X, Xie M H, et al. Materials Today Energy, 2019, 12, 129.
27 Cheng X Q, Li T Y, Yan L L, et al. Science Advances, 2023, 9(34), eadh8195.
28 Shang W, Deng T. Nature Energy, 2016, 1(9), 1.
29 Ghasemi H, Ni G, Marconnet A M, et al. Nature Communications, 2014, 5(1), 4449.
30 Zhu L L, Gao M M, Peh C K N, et al. Nano Energy, 2019, 57, 507.
31 Gao M M, Zhu L L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841.
32 Tao P, Ni G, Song C Y, et al. Nature Energy, 2018, 3(12), 1031.
33 Zhang N, Li M J, Tan C F, et al. Journal of Materials Chemistry A, 2017, 5(40), 21570.
34 Wu X, Robson M E, Phelps J L, et al. Nano Energy, 2019, 56, 708.
35 Liu K K, Jiang Q S, Tadepalli S, et al. ACS Applied Materials & Interfaces, 2017, 9(8), 7675.
36 Cui T M, Li S K, Chen S F, et al. International Journal of Pharmaceutics, 2021, 600, 120502.
37 Song C Q, Li T C, Guo W, et al. New Journal of Chemistry, 2018, 42(5), 3175.
38 Zhu G L, Xu J J, Zhao W L, et al. ACS Applied Materials & Interfaces, 2016, 8(46), 31716.
39 Wang G, Fu Y, Guo A K, et al. Chemistry of Materials, 2017, 29(13), 5629.
40 Long R, Li Y, Song L, et al. Small, 2015, 11(32), 3873.
41 Linic S, Aslam U, Boerigter C, et al. Nature Materials, 2015, 14(6), 567.
42 Bae K, Kang G M, Cho S K, et al. Nature Communications, 2015, 6(1), 10103.
43 Zhu M W, Li Y J, Chen F J, et al. Advanced Energy Materials, 2018, 8(4), 1701028.
44 Hessel C M, Pattani V P, Rasch M, et al. Nano Letters, 2011, 11(6), 2560.
45 Tan K W, Yap C M, Zheng Z Y, et al. Advanced Sustainable Systems, 2022, 6(4), 2100416.
46 Tessema A A, Wu C M, Motora K G, et al. Composites Science and Technology, 2021, 211, 108865.
47 Song L, Zhang X F, Wang Z G, et al. Desalination, 2021, 507, 115024.
48 Abdel-Wahed M S, El-Kalliny A S, Badawy M I, et al. Chemical Engineering Journal, 2020, 382, 122936.
49 Yang L, Xiang Y B, Jia F F, et al. Applied Catalysis B:Environmental, 2021, 292, 120198.
50 Zhu B, Kou H, Liu Z X, et al. ACS Applied Materials & Interfaces, 2019, 11(38), 35005.
51 Li D Y, Zhang X J, Zhang S Y, et al. Chemosphere, 2021, 267, 128916.
52 Guo X X, Gao H, Wang S Y, et al. Desalination, 2020, 488, 114535.
53 Zhang R, Zhou Y W, Xiang B, et al. Advanced Materials Interfaces, 2021, 8(24), 2101160.
54 Jin Y, Chang J, Shi Y, et al. Journal of Materials Chemistry A, 2018, 6(17), 7942.
55 Chen Y F, Ju J G, Zhang Y, et al. Desalination, 2024, 575, 117320.
56 Huang J, Hu Y W, Bai Y J, et al. Desalination, 2020, 489, 114529.
57 Liu Z, Gao B, Miao Y, et al. Composites Communications, 2022, 36, 101358.
58 Lu F, Wang J G, Sun X L, et al. Materials & Design, 2020, 189, 108503.
59 Zang L L, Sun L G, Zhang S C, et al. Chemical Engineering Journal, 2021, 422, 129998.
60 Li A L, Xiong J, Liu Y, et al. Chemical Engineering Journal, 2022, 428, 131365.
61 Wang Y C, Wang C Z, Song X J, et al. Journal of Materials Chemistry A, 2018, 6(3), 963.
62 Fan X F, Lv B W, Xu Y L, et al. Solar Energy, 2020, 209, 325.
63 Wu D X, Liang J J, Zhang D X, et al. Solar Energy Materials and Solar Cells, 2020, 215, 110591.
64 Ren Y F, Zhang G X, Hui H Q, et al. Desalination, 2023, 562, 116712.
65 Ren Y F, Lian R H, Liu Z X, et al. Desalination, 2022, 535, 115836.
66 Sui Z Y, Xue X L, Wang Q H, et al. Carbohydrate Polymers, 2024, 331, 121859.
67 Zhuang P Y, Li D, Xu N, et al. Global Challenges, 2021, 5(1), 2000053.
68 Wang S, Niu Y, Wang C J, et al. ACS Applied Materials & Interfaces, 2021, 13(36), 42803.
69 Gao T T, Li Y J, Chen C J, et al. Small Methods, 2019, 3(2), 1800176.
70 Chen J Y, Cao M L, Yue Y Y. Science China Materials, 2024, 67(3), 954.
71 Zhang Q, Yi G, Fu Z, et al. ACS Nano, 2019, 13(11), 13196.
72 Li L, Wang J N, Jiao B, et al. Organic Electronics, 2023, 114, 106727.
73 Li H N, Yang H C, Zhu C Y, et al. Journal of Materials Chemistry A, 2022, 10(39), 20856.
74 Li S Y, Qiu F, Xia Y G, et al. ACS Applied Materials & Interfaces, 2022, 14(17), 19409.
75 Luo Q L, Yang Y, Wang K K, et al. Science China Materials, 2023, 66(8), 3310.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 董梦娇, 徐洋洋, 李净珊, 叶仪鹏, 李秉芯, 陈昊天. 氮掺杂碳纳米纤维负载Co-N-C纳米片用于电催化氧还原反应[J]. 材料导报, 2025, 39(11): 24040222-7.
[3] 何诗峰, 薛蕊, 贺永晴, 黄妍, 伍一波, 师奇松. Tb3+掺杂PVDF/PLLA多功能压电纤维的制备及性能[J]. 材料导报, 2024, 38(8): 22070274-6.
[4] 周美玲, 杜姗, 欧康康, 代云玲, 齐琨, 王华平. 纳米纤维基智能创伤敷料的研究进展[J]. 材料导报, 2024, 38(20): 23060224-11.
[5] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[6] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[7] 孙启萌, 孙淼, 祁艳菲, 金国庆, 周兴海, 吕丽华, 魏春艳, 高原. 三维光热蒸发器结构设计理念研究进展[J]. 材料导报, 2024, 38(14): 23030100-9.
[8] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[9] 李雪, 周明宇, 韩朋, 戚桂村, 高达利, 陶胜洋, 王玉超. 高效太阳能驱动海水淡化的最新研究进展[J]. 材料导报, 2024, 38(13): 22110120-16.
[10] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[11] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[12] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[13] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[14] 周鉴澄, 林骏, 赵小敏, 陈丹青, 陈国华. 静电纺丝法制备定向导液复合纤维材料的研究进展[J]. 材料导报, 2023, 37(16): 21100141-7.
[15] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed