Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24030094-18    https://doi.org/10.11896/cldb.24030094
  金属与金属基复合材料 |
元胞自动机在凝固组织演变研究中的应用进展
魏鹏飞1, 陈蕴博2, 魏世忠3, 毛丰4, 王晓东3, 陈冲4, 王金南2, 王自东1,*
1 北京科技大学材料科学与工程学院,北京 100083
2 北京机科国创轻量化科学研究院有限公司,北京 101400
3 河南科技大学金属材料磨损控制与成型技术国家地方联合工程研究中心,河南 洛阳 471000
4 龙门实验室智能制造基础研究中心,河南 洛阳 471000
Progress in the Application of Cellular Automata to the Evolution of Solidified Microstructure
WEI Pengfei1, CHEN Yunbo2, WEI Shizhong3, MAO Feng4, WANG Xiaodong3, CHEN Chong4,WANG Jinnan2, WANG Zidong1,*
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing National Innovation Institute of Lightweight Ltd., Beijing 101400, China
3 National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, Henan, China
4 Intelligent Manufacturing Fundamental Research Center, Longmen Laboratory, Luoyang 471000, Henan, China
下载:  全 文 ( PDF ) ( 40769KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 材料凝固过程中微观组织演变直接影响到材料的性能。元胞自动机模型(CA)作为一种离散模型,被广泛应用于材料科学领域中,用来模拟和预测微观组织的演变。本综述针对CA在模拟凝固组织中的研究进展与应用进行了全面的阐述,包括其理论、算法、软件开发及最新的研究成果。在阐明元胞自动机理论的基础上,结合凝固过程微观组织演变的特点,总结了元胞自动机在理解凝固过程微观组织演变中的潜力和局限性。最后,对元胞自动机在模拟凝固组织演变中的研究趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏鹏飞
陈蕴博
魏世忠
毛丰
王晓东
陈冲
王金南
王自东
关键词:  元胞自动机  枝晶生长  仿真模拟  组织演变  凝固    
Abstract: The performance of a material is directly affected by its microstructural development during the solidification phase. Discrete cellular automaton (CA) models are widelyused in materials science to simulate and predict microstructural growth. This review comprehensively explains the developments and applications of CA in solidification structure simulation, including the theoretical underpinnings, computational procedures, software development, and recent advances. Summarizes the potential and limitations of cellular automata in understanding microstructure evolution during solidification, explores the evolution of microstructures during solidification, and adds to our existing knowledge of cellular automaton theory. Finally, the research trend in simulating the evolution of the solidification microstructure using cellular automaton theory is explored.
Key words:  cellular automata    dendritic growth    simulation    microstructure evolution    solidification
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TG21  
基金资助: 龙门实验室重大科技项目(231100220400);中国机械科学研究院集团有限公司科技发展基金(212202Q9)
通讯作者:  *Zidong Wang, corresponding author, is chief professor/doctoral supervisor of the School of Materials Science and Engineering,University of Science and Technology Beijing.From 1984 to 1994,he studied in the Department of Metal Materials and Technology of Harbin Institute of Technology and obtained his master’s and doctor’s degree.From 1994 to 1996,he worked at the postdoctoral mobile station of the Department of Metallurgy,University of Science and Technology Beijing.At present,the main research direction is metal nanocrystalline theory.wangzd@mater.ustb.edu.cn   
作者简介:  Pengfei Wei obtained a bachelor’s degree in enginee-ring from Hebei University of Engineering in 2022.He is currently a master’s degree candidate in the Department of Materials Processing,School of Materials Science and Engineering,University of Science and Technology Beijing,under the guidance of Professor Wang Zidong.His current main research areas are the evolution laws of solidification structures of alloy steels and the mechanisms of internal defects formation.
引用本文:    
魏鹏飞, 陈蕴博, 魏世忠, 毛丰, 王晓东, 陈冲, 王金南, 王自东. 元胞自动机在凝固组织演变研究中的应用进展[J]. 材料导报, 2025, 39(12): 24030094-18.
WEI Pengfei, CHEN Yunbo, WEI Shizhong, MAO Feng, WANG Xiaodong, CHEN Chong,WANG Jinnan, WANG Zidong. Progress in the Application of Cellular Automata to the Evolution of Solidified Microstructure. Materials Reports, 2025, 39(12): 24030094-18.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030094  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24030094
1 Liu H W, Fu P X, Kang X H, et al. China Foundry. 2014, 11(1), 46.
2 Nagasivamuni B, Jeffrey V, David S, et al. Journal of Materials Science & Technology, 2023, 144, 243.
3 Hou Y, Gao Z Y, Li C J. Metals, 2022, 12(11), 1778.
4 Wang T M, Wei J J, Wang X D, et al. Acta Metallurgica Sinica, 2018, 54(2), 193.
5 Apel M, Eiken J, Hecht U. The European Physical Journal:Special Topics, 2014, 223(3), 545.
6 Mohamad A J, Daniel R R, Gibout S, et al. Renewable and Sustainable Energy Reviews, 2017, 74, 1064.
7 Rodgers T M, Moser D, Abdeljawad F, et al. Additive Manufacturing, 2021, 41, 101953.
8 Yu A S, Yang X J, Guo H M. Transactions of Nonferrous Metals Society of China, 2020, 30(3), 559.
9 Liu Z J, Ouyang J, Zhou W, et al. Computational Materials Science, 2015, 97, 245.
10 Tang J, Kumar S, De Lorenzis L, et al. Computer Methods in Applied Mechanics and Engineering, 2023, 414, 116197.
11 Zhu M M, Lv G L, Li X M, et al. Materials Research Express, 2023, 10(4), 46518.
12 S M E, Tavakoli R, Romero I, et al. Computational Materials Science, 2023, 216, 111882.
13 Wang J J, Meng H J, Yang J, et al. The Journal of Supercomputing, 2022, 79(5), 4870.
14 Zhao J Z, Li L, Zhang X F. Acta Metallurgica Sinica, 2014, 50(6), 641 .
15 Smith M A. Cellular automata methods in mathmatical physics. Ph. D. Thesis. Massachusetts Institute of Technology, USA, 1994.
16 Neumann J V. Theory of self reproducing automata, University of Illinois Press, USA, 1966, pp.21.
17 Gardner M. Scientific American, 1970, 233, 120.
18 Dreelan D, Ivankovic A, Browne D J. Computational Materials Science, 2022, 215, 111773.
19 Gu C, Michael P M, Alan A L. NPJ Computational Materials, 2022, 8(1), 134.
20 Matthew R, Alex P, James B. Computational Materials Science, 2021, 196, 110498.
21 Beltran-Sanchez L, Stefanescu D M. Metallurgical and Materials Transactions A, 2003, 34, 367.
22 Hunt J D. Material Science and Engineering, 1984, 65(1), 75.
23 Gandin C A, Desbiolles J, Rappaz M. Metallurgical and Materials Tran-sactions A, 1999, 30A(12), 3153.
24 Oldfield W. Freezing of Cast Iron, 1966, 59(2), 945.
25 Rappaz M, Gandin C A. Acta Metallurgica et Materialia, 1993, 41(2), 345.
26 Kurz W, Giovanola W, Trivedi R. Acta Metallurgica, 1986, 34(5), 823.
27 Sekerka R F. Theory of crystal growth morphology, Elsevier Science BV, Netherlands, 2004, pp.55.
28 Nastac L. Acta Materialia, 1999, 47(17), 4253.
29 Zhu M F, Stefanescu D M. Acta Materialia, 2007, 55(5), 1741.
30 Wei L, Lin X, Wang M, et al. Applied Physics A, 2011, 103, 123.
31 Beltran-Sanchez L, Stefanescu D M. Metallurgical and Materials Transactions A, 2004, 35, 2471.
32 Chen R, Xu Q, Liu B. Journal of Materials Science & Technology, 2014, 30(12), 1311.
33 Yin H, Felicelli S D. Acta Materialia, 2010, 58(4), 1455.
34 Liang X, Cornelis B, Marcel H, et al. Metallurgical and Materials Tran-sactions B, 2023, 54(3), 1088.
35 Ashish A, Junji S, Graham M D, et al. Computational Materials Science, 2023, 217, 111880.
36 Jin K N, Yang Z Y, Chen P, et al. Journal of Materials Processing Technology, 2023, 315, 117927.
37 Zhang L, Zhao H L, Zhu M F. Acta Metallurgica Sinica, 2015, 51(2), 148.
38 Boccardo A D, Dardati P M, Godoy L A. Materials Science and Technology, 2018, 34(14), 1710.
39 Yu J, Xv Q, Cui K, et al. Acta Metallica, 2007, 43(7), 731.
40 Zhan X, Wei Y, Dong Z. Journal of Materials Processing Technology, 2008, 208(1), 1.
41 Meng X, Gao X, Huang S, et al. Metals, 2018, 8(7), 529.
42 Brown S G R, Spittle J A. Scripta Metallurgica et Materialia, 1992, 27(11), 1599.
43 Gandin C A, Rappaz M, Tintillier. Metallurgical and Materials Transactions A, 1994, 25, 629.
44 Brown S G R, Bruce N B. Scripta Metallurgica et Materialia, 1995, 32(2), 241.
45 Brown S G R, Bruce N B. Journal Material Science, 1995, 30(5), 1144.
46 Brown S G R. Journal of Materials Science, 1998, 33(19), 4769.
47 Gandin C A. Acta Metallurgica et Materialia, 1994, 42, 2233.
48 Gandin C A, Rappaz M, Tintillier R. Metallurgical Transactions A, 1993, 24(2), 467.
49 Zhu M F, Hong C P. ISIJ International, 2001, 41(5), 436.
50 Zhu M F, Kim J M, Hong C P. Transactions of the Iron & Steel Institute of Japan, 2001, 41(9), 992.
51 Morita S, Miki Y, Toishi K. ISIJ International, 2020, 60(1), 99.
52 Wang W L, Liu Y H, Guo L T, et al. Physica Status Solidi (A), 2022, 219(9), 2100620.
53 Ogawa J, Natsume Y. IOP Conference Series:Materials Science and Engineering, 2020, 861, 12059.
54 Cui L, Shi Y H, Meng X N. Journal of Iron and Steel Research International, 2022, 29(11), 1789.
55 Guo Z, Zhou J X, Shen X, et al. Materials for Mechanical Engineering, 2020, 44(2), 65.
56 Wang Z H, Luo S, Wang W L, et al. Ironmaking & Steelmaking, 2020, 47(9), 1046.
57 Huang C, Hecht U. Metallurgical and Materials Transactions B, 2023, 54(1), 146.
58 Romain F, Oriane S, Gildas G, et al. Journal of Materials Science & Technology, 2022, 124, 26.
59 Ma J, Niu X F, Zhou Y, et al. Journal of Materials Research and Technology, 2023, 27, 600.
60 Ge H H, Wang Y X, Tian X T, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(7), 2116.
61 Ren F L, Ge H H, Fang H, et al. International Journal of Heat and Mass Transfer, 2023, 218, 124809.
62 Li X X, Yang X H, Xue C P, et al. Computational Materials Science, 2023, 222, 112120.
63 Fang H, Tang Q Y, Zhang Q Y, et al. International Journal of Heat and Mass Transfer, 2019, 133, 371.
64 Liu S Y, Hong K, Shin Y C. Computational Materials Science, 2021, 192, 110405.
65 Bailey N S, Hong K, Shin Y C. Computational Materials Science, 2020, 172(C), 109291.
66 Wei J J, Wang X D, Yao M. Modelling and Simulation in Materials Science and Engineering, 2021, 29(7), 75005.
67 Zhang S Y, Hou C Y, Ma Z J. International Journal of Metalcasting, 2021, 16(prepublish), 1.
68 Natsume Y. IOP Conference Series, Materials Science and Engineering, 2019, 529(1), 12038.
69 Yang Y, Yang G Y, Luo S F, et al. Acta Metallurgica Sinica, 2019, 55(2), 202.
70 Andersson C, Lundbäck A. Metals, 2023, 13(11), 1846.
71 Fang J H, Liu X, Fan Y M, et al. Materials Transactions, 2020, 61(7), 1230.
72 Sun D K, Zhu M F, Wang J, et al. International Journal of Heat and Mass Transfer, 2016, 94, 474.
73 Lee W, Bae J, Lee H, et al. Journal of Alloys and Compounds, 2022, 929, 167233.
74 Wang K W, Wu M W, Tian B H, et al. Chinese Physics B, 2022, 31(9), 616.
75 Rai A, Markl M, Körner C. Computational Materials Science, 2016, 124, 37.
76 Li L Q, Ming L X, Hua J Y. Journal of Materials Research, 2017, 32(16), 3175.
77 Chen S, Guillemot G, Gandin C A. ISIJ International, 2014, 54(2), 401.
78 Chen S, Guillemot G, Gandin C. Acta Materialia, 2016, 115, 448.
79 Dmitrii U, Zhirong L, Andy N, et al. Materials & Design, 2022, 219, 110823.
80 Jia Y, Zhao D, Li C, et al. Metals, 2020, 10(8), 1052.
81 Zhai Y, Ma B, Li Y, et al. Journal of Central South University, 2016, 23(1), 10.
82 Zhao Y, Qin R, Chen D, et al. Steel Research International, 2015, 86(12), 1490.
83 Luo S, Wang W, Zhu M. International Journal of Heat & Mass Transfer, 2018, 116, 940.
[1] 张陕南, 侯江涛, 沈元勋, 钟素娟, 秦建, 龙伟民. 银铜复合带在低过载电流下沿界面分断的失效机理研究[J]. 材料导报, 2025, 39(9): 24040030-5.
[2] 曹世豪, 赵锡佳, 王方全, 喻贤磊, 杨荣山. 方腔内正十八烷相变材料凝固放热特性试验研究[J]. 材料导报, 2025, 39(9): 24040013-6.
[3] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[4] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[5] 张凯伦, 潘栋, 郭庆涛, 仲红刚, 张宇, 张翔宇, 徐佩. 不同二冷比水量下24Mn钢连铸坯枝晶生长热模拟研究[J]. 材料导报, 2025, 39(5): 23100237-8.
[6] 董伟, 刘苏磊, 王旭东, 许富民. 脉冲微孔喷射法的应用研究进展[J]. 材料导报, 2025, 39(3): 24020091-9.
[7] 蒙毅, 杨越, 孙健, 曹雷刚. Cu含量对Mg-Cu合金凝固行为的影响[J]. 材料导报, 2025, 39(11): 22100123-9.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[10] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[11] 蔡佳思, 刘湘波, 王新元, 魏艳红. 强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟[J]. 材料导报, 2024, 38(19): 23060085-7.
[12] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[13] 宋志起, 赵旭东, 王军, 胡朝晟, 刘永珍, 麻永林. 脉冲磁场孕育处理下A356铝合金凝固组织的演变规律[J]. 材料导报, 2024, 38(13): 22100215-7.
[14] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
[15] 张墅野, 邵建航, 何鹏. 银纳米线透明导电薄膜仿真研究现状[J]. 材料导报, 2024, 38(10): 22110190-10.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed