Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24080164-6    https://doi.org/10.11896/cldb.24080164
  金属与金属基复合材料 |
激光选区熔化Inconel 625合金在酸性环境中的腐蚀机理研究
韩炬1,†, 王博超1,2,†, 董东东2, 马汝成2, 龙海洋1, 李晓硕1, 王涛1, 闫星辰2,*
1 华北理工大学机械工程学院,河北 唐山 063210
2 广东省科学院新材料研究所,粤港现代表面工程技术联合实验室,广东省现代表面工程技术重点实验室,广州 510650
Investigation on the Corrosion Mechanism of Inconel 625 Alloy by Selective Laser Melting in Acidic Environment
HAN Ju1,†, WANG Bochao1,2,†, DONG Dongdong2, MA Rucheng2, LONG Haiyang1, LI Xiaoshuo1, WANG Tao1, YAN Xingchen2,*
1 College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
2 Guangdong-Hong Kong Joint Laboratory of Modern Surface Engineering Technology, Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 42666KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了激光选区熔化成形的Inconel 625合金在硫酸和硝酸混合溶液(以下统称混酸)中的腐蚀机理以及粗糙度对其腐蚀速率的影响。通过激光选区熔化(SLM)技术制备Inconel 625原始样品,然后对部分样品的六个面进行抛光,将抛光样品和原始样品在50 ℃混酸溶液中分别浸泡腐蚀120 h、240 h、480 h、840 h、1 080 h。结果表明,样品经混酸溶液浸泡后,首先在晶间产生局部点蚀,在熔池边缘处点蚀的密度更高。随着浸泡时间的延长,点蚀逐渐蔓延至整个样品晶间并逐渐腐蚀进入晶粒中。抛光样品的整体平均腐蚀速率为2.80×10-3 mm/a,原始样品的整体平均腐蚀速率为12.70×10-3 mm/a,是抛光样品的近5倍,说明粗糙度对腐蚀速率有极大的影响,样品粗糙度越大导致其与混酸接触的面积越大,腐蚀速率越快。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩炬
王博超
董东东
马汝成
龙海洋
李晓硕
王涛
闫星辰
关键词:  激光选区熔化  Inconel 625  耐腐蚀性  粗糙度  腐蚀机理    
Abstract: Corrosion mechanism of Inconel 625 alloy fabricated by selective laser melting was investigated in a mixed acid (a mixed solution of sulfuric acid and nitric acid). Meanwhile, for Inconel 625 alloy, the effect of roughness on corrosion rate was investigated. The original and polished samples of Inconel 625 fabricated by selective laser melting (SLM) were immersed in a mixed acid at 50 ℃ for 120 h, 240 h, 480 h, 840 h and 1 080 h, respectively. The results show that the corrosion type of the alloy is pitting corrosion, which is first generated between the alloy grains, and the pitting density at the edge of the alloy molten pool was higher. With the increase of corrosion time, the entire grain boundary was gradually corroded, and pitting corrosion occurs inside the grain. The overall average corrosion rate of the polished sample was 2.80×10-3 mm/a, and the original sample was 12.70×10-3 mm/a, which was nearly 5 times that of the polished sample. It showed that roughness has a great influence on the corrosion rate, and the higher the roughness of the sample, the larger the contact area with the mixed acid, and the faster the corrosion rate.
Key words:  selective laser melting    Inconel 625    corrosion resistance    roughness    corrosion mechanism
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TG174.3  
基金资助: 中法平台项目(2023YFE0108000);广东省科技计划项目资助(2023B1212120008;2023B1212060045);广东省科学院科技合作平台建设资金(2022GDASZH-2022010203-003);广州市“青年科技人才托举工程”(QT-2023-038);唐山市应用基础研究项目(22130219G);广东省基础与应用研究基金项目(2024A151501102)
通讯作者:  *闫星辰,广东省科学院新材料研究所激光制造研究室主任、研究员。目前主要从事激光成形高性能材料的研究。yanxingchen@gdinm.com   
作者简介:  韩炬,博士,华北理工大学机械工程学院副教授、硕士研究生导师。目前主要从事机械动力学、数字化设计及制造等方面的研究。王博超,华北理工大学机械工程学院的硕士研究生,在闫星辰研究员和韩炬教授的共同指导下进行研究。目前主要对激光3D打印微反应器进行研究。
†共同第一作者
引用本文:    
韩炬, 王博超, 董东东, 马汝成, 龙海洋, 李晓硕, 王涛, 闫星辰. 激光选区熔化Inconel 625合金在酸性环境中的腐蚀机理研究[J]. 材料导报, 2025, 39(10): 24080164-6.
HAN Ju, WANG Bochao, DONG Dongdong, MA Rucheng, LONG Haiyang, LI Xiaoshuo, WANG Tao, YAN Xingchen. Investigation on the Corrosion Mechanism of Inconel 625 Alloy by Selective Laser Melting in Acidic Environment. Materials Reports, 2025, 39(10): 24080164-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080164  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24080164
1 Chen Y, Xu M, Zhang T, et al. Journal of Alloys and Compounds, 2022, 910, 164957.
2 Shankar V, Rao K B S, Mannan S L. Journal of Nuclear Materials, 2001, 288(2-3), 222.
3 Ganesh P, Kaul R, Paul C P, et al. Materials Science & Engineering A, 2010, 527(29-30), 7490.
4 Dinda G P, Dasgupta A K, Mazumder J. Materials Science & Engineering A, 2009, 509(1-2), 98.
5 Ding X P, Zhang Q, Zhou Y Y, et al. Journal of Materials Engineering, 2024(10), 97(in Chinese).
丁雪萍, 张祺, 周崯莹, 等. 材料工程, 2024(10), 97.
6 Wang L, Zhang L, Wu W H. Materials Research and Application, 2024, 18(1), 62(in Chinese).
汪良, 张亮, 吴文恒. 材料研究与应用, 2024, 18(1), 62.
7 Wang J, Song J W, Dong D D, et al. Materials Research and Application, 2024, 18(3), 487(in Chinese).
王见, 宋嘉薇, 董东东, 等. 材料研究与应用, 2024, 18(3), 487.
8 Zhang B C, Xiu M Z, Tan Y T, et al. Applied Surface Science, 2019, 490, 556.
9 Klapper H S, Wangenheim C, Molodtsov N, et al. In:Nace Corrosion Conference. New Orleans, USA, 2017, pp.9345.
10 Dai N W, Zhang L C, Zhang J X, et al. Corrosion Science, 2016, 102, 484.
11 Leon A, Aghion E. Materials Characterization, 2017, 131, 188.
12 Cabrini M, Lorenzi S, Testa C, et al. Journal of the Electrochemical Society, 2019, 166(11), C3399.
13 Yang R C, Wang H, Zheng L P, et al. Materials Reports, 2001(11), 21(in Chinese).
杨瑞成, 王晖, 郑丽平, 等. 材料导报, 2001(11), 21.
14 Zhang S K, Luo C H, Zheng Y,et al. Enery Environmental Protection, 2023, 37(5), 174 (in Chinese).
张仕凯, 罗沧海, 郑园, 等. 能源环境保护, 2023, 37(5), 174.
15 Wei W, Xu W C, Yan D M. Dyestuffs and Coloration, 2019, 56(6), 55 (in Chinese).
魏微, 胥维昌, 鄢冬茂. 染料与染色, 2019, 56(6), 55.
16 Kumar M P, Manikandan M. Materials Letters, 2023, 333, 133679.
17 Chu Q K, Yu C F, Deng C Y, et al. China Surface Engineering, 2021, 34(1), 76 (in Chinese).
褚清坤, 余春风, 邓朝阳, 等. 中国表面工程, 2021, 34(1), 76.
18 Yuan Z W, Chang F C, Ma R, et al. Materials Reports, 2022, 36(3), 200 (in Chinese).
袁战伟, 常逢春, 马瑞, 等. 材料导报, 2022, 36(3), 200.
19 Li S, Wei Q S, Shi Y S, et al. Journal of Materials Science & Technology, 2015, 31(9), 946.
20 Tan C L, Zhou K S, Ma W Y, et al. Materials & Design, 2017, 134, 23.
21 Basak A, Das S. Journal of Alloys and Compounds, 2017, 705, 806.
22 Yan X C, Gao S H, Chang C, et al. Journal of Materials Processing Technology, 2021, 288, 116878.
23 Chen X J, Zhao G R, Dong D D, et al. Chinese Journal of Lasers, 2019, 45(12), 1202002 (in Chinese).
陈秀娟, 赵国瑞, 董东东, 等. 中国激光, 2019, 46(12), 1202002.
24 Xiao J, Shi Z F, Liu J, et al. Chinese Journal of Applied Chemistry, 2023, 40(5), 720(in Chinese).
肖娟, 石志锋, 刘佳, 等. 应用化学, 2023, 40(5), 720.
25 Xu L Y, Shao C S, Tian L, et al. Corrosion Science, 2022, 201, 110295.
26 Takeuchi A, Inoue A. Materials Transactions, 2005, 46(12), 2817.
27 Gola K, Ledwig P, Dubiel B. JOM, 2023, 75(4), 1242.
[1] 赵帅, 文绍牧, 廖柯熹, 秦林, 林冬, 高健. 无损检测技术在高含硫天然气管道中的应用研究进展[J]. 材料导报, 2025, 39(9): 24030169-9.
[2] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[3] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[4] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[5] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[6] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[7] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[8] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[9] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[10] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[11] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[12] 陶宏伟, 禹庭, 曹明轩, 吴仲恒, 蔡召兵, 刘敏, 闫星辰. 激光选区熔化CoCrMo合金的组织研究及生物应用[J]. 材料导报, 2024, 38(17): 23030026-6.
[13] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[14] 丁茜, 李海波, 廖俊生. 铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展[J]. 材料导报, 2024, 38(12): 23030113-11.
[15] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[1] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[2] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[3] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[4] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[5] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
[6] WANG Yunpeng, HU Jiawei, XU Xiaoyun, LIU Daofeng, JIANG Hongzhang, WANG Xiaoyong, YAN Yinbiao. Research Progress of Effect of Multi-directional Forging on Microstructure and Properties of Aluminum Alloys[J]. Materials Reports, 2019, 33(13): 2266 -2271 .
[7] WANG Zhiwei, ZHANG Chunying, TIAN Chaokai, LIU Chuanrui, WANG Zhaoyu, ZHONG Liutong, LIU Enci. Effect of Filler on Pultrusion Epoxy Resin Process and Reaction Characteristics[J]. Materials Reports, 2019, 33(z1): 515 -518 .
[8] LI Hongxia, LI Baowei, DENG Leibo, XU Pengfei, LIU Zhongxing. Effects of Microwave Heat Treatment Temperature on Crystallization and Properties of Tailing-based Glass-Ceramics[J]. Materials Reports, 2019, 33(20): 3401 -3407 .
[9] QIN Xiaochuan,LIU Jiaping,SHI Liang,MU Song,CAI Jingshun,WU Zhenjie,ZHOU Xiaocheng,LIU Jianzhong. Research Progress of Concrete Durability Testing Method and Device Under the Coupling Effect of Load and Chloride Ion[J]. Materials Reports, 2020, 34(3): 3106 -3115 .
[10] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed