Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24030238-10    https://doi.org/10.11896/cldb.24030238
  高分子与聚合物基复合材料 |
聚酰亚胺类复合隔热材料的研究进展
李仁豪1,2, 鲍艳1,*, 赵海航1
1 陕西科技大学轻工科学与工程学院(柔性电子学院),西安 710021
2 荆楚理工学院通用航空学院,湖北 荆门 448000
Research Progress on Polyimide Composite Thermal Insulation Materials
LI Renhao1,2, BAO Yan1,*, ZHAO Haihang1
1 College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science and Technology, Xi’an 710021, China
2 School of General Aviation, Jingchu University of Technology, Jingmen 448000, Hubei, China
下载:  全 文 ( PDF ) ( 30947KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚酰亚胺具有优异的力学性能、热稳定性和低导热性。近年来,由于对节能的重视,聚酰亚胺类复合材料在隔热领域的应用引起了广泛研究。但传统聚酰亚胺复合隔热材料的隔热效果相比于无机复合材料并不占优势,因此研究具有超低导热系数的聚酰亚胺类复合隔热材料意义重大。本文综述了聚酰亚胺类复合隔热材料的研究进展,首先分析了聚酰亚胺类复合隔热材料的隔热机理,并对聚酰亚胺类复合隔热材料进行了分类,然后重点从聚酰亚胺分子链、填料类型及用量和复合成型工艺三方面归纳了其对聚酰亚胺类复合材料隔热性能的影响,并针对当前研究中存在的问题、未来的发展方向以及可行性方法进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李仁豪
鲍艳
赵海航
关键词:  聚酰亚胺  复合材料  隔热材料  导热系数    
Abstract: Polyimide exhibits excellent mechanical properties, thermal stability, and low thermal conductivity. In recent years, the application of polyimide composite materials in the field of thermal insulation has attracted widespread research interest due to the increasing emphasis on energy conservation. However, compared to inorganic composite materials, conventional polyimide composite thermal insulation materials do not have a significant advantage in thermal insulation performance. Therefore, developing polyimide-based composite thermal insulation materials with ultra-low thermal conductivity is of great significance. Herein, this article reviews the research progress on polyimide composite thermal insulation materials. It first analyzes the thermal insulation mechanisms and classifies the polyimide composite materials. Then the factors influencing the thermal insulation performance of polyimide composite materials are summarized, especially from the three aspects of polyimide molecular chains, filler types and quantities, as well as forming process. It finally concludes the challenges in current research and provides the prospects for future trends.
Key words:  polyimide    composite material    thermal insulation material    thermal conductivity
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TQ342  
基金资助: 国家自然科学基金(22378253;22078188);咸阳市科技计划项目(2021ZDZX-GY-0007);荆楚理工学院校级科研项目(QN202313)
通讯作者:  *鲍艳,陕西科技大学轻工科学与工程学院教授、博士研究生导师,从事功能性皮革化学品及有机无机纳米复合材料的研究。baoyan@sust.edu.cn   
作者简介:  李仁豪,陕西科技大学轻工科学与工程学院(柔性电子学院)博士研究生,在鲍艳教授的指导下进行研究,主要研究领域为功能纤维及其复合材料。
引用本文:    
李仁豪, 鲍艳, 赵海航. 聚酰亚胺类复合隔热材料的研究进展[J]. 材料导报, 2025, 39(10): 24030238-10.
LI Renhao, BAO Yan, ZHAO Haihang. Research Progress on Polyimide Composite Thermal Insulation Materials. Materials Reports, 2025, 39(10): 24030238-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030238  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24030238
1 Dixon G, Abdel-Salam T, Kauffmann P. Energy, 2010, 35(3), 1491.
2 Mou P, Wan G, Wu L, et al. Journal of Materials Chemistry A, 2023, 11(8), 4345.
3 Ding R, Yan Q, Xue F, et al. Small, 2023, 19(50), 2304946.
4 International Energy Agency and the United Nations Environment Programme. 2018 Global status report-towards a zero-emission, efficient and resilient buildings and construction sector, International Energy Agency, Paris, 2018.
5 International Energy Agency. Transition to sustainable buildings-strategies and opportunities to 2050, International Energy Agency, Paris, 2013.
6 Ong H C, Mahlia T M I, Masjuki H H. Renewable and Sustainable Energy Reviews, 2011, 15(1), 639.
7 Aditya L, Mahlia T M I, Rismanchi B, et al. Renewable and Sustainable Energy Reviews, 2017, 73, 1352.
8 Xue S, Huang G, Chen Q, et al. Nano-Micro Letters, 2024, 16(1), 1.
9 Ding Y, Hou H, Zhao Y, et al. Progress in Polymer Science, 2016, 61, 67.
10 Liaw D J, Wang K L, Huang Y C, et al. Progress in Polymer Science, 2012, 37(7), 907.
11 Kurabayashi K, Goodson K E. Journal of Applied Physics, 1999, 86(4), 1925.
12 Li M K, Guo Y Q, Ruan K P, et al. Polymer Bulletin, 2023, 36(8), 979 (in Chinese).
李沐坤, 郭永强, 阮坤鹏, 等. 高分子通报, 2023, 36(8), 979.
13 Dri F L, Shang S L, Hector L G, et al. Modelling and Simulation in Materials Science and Engineering, 2014, 22(8), 085012.
14 Pei Y, Chen L, Jeon W, et al. Nature Communications, 2023, 14(1), 8242.
15 Guo J F, Tang G H. International Journal of Heat and Mass Transfer, 2019, 137, 64.
16 Obori M, Suh D, Yamasaki S, et al. Physical Review Applied, 2019, 11(2), 024044.
17 Yan X, Liu C, Gadre C A, et al. Nature, 2021, 589(7840), 65.
18 Zhu G, Xu H, Dufresne A, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(5), 7168.
19 Sen S, Singh A, Bera C, et al. Cellulose, 2022, 29(9), 4805.
20 Tang G H, Bi C, Zhao Y, et al. Energy, 2015, 90, 701.
21 Smith D M, Maskara A, Boes U. Journal of Non-crystalline Solids, 1998, 225, 254.
22 Thapliyal P C, Singh K. Journal of Materials, 2014, 2014(1), 127049.
23 Wang D, Peng Y, Dong J, et al. Composites Communications, 2023, 37, 101429.
24 Wang S, Ding R, Liang G, et al. Advanced Materials, 2024, 36(13), 2313444.
25 Song S, Shi Y, Tan J, et al. Journal of Industrial and Engineering Chemistry, 2022, 109, 404.
26 Shao H, Zhao S, Fei Z, et al. Composites Part B:Engineering, 2023, 266, 111002.
27 Chae H G, Kumar S. Science, 2008, 319(5865), 908.
28 Huang C, Qian X, Yang R. Materials Science and Engineering R, 2018, 132, 1.
29 Ni L, Luo Y, Peng X, et al. Polymer, 2021, 229, 123957.
30 Ni L, Luo Y, Qiu C, et al. Materials Today Physics, 2022, 26, 100720.
31 Wu T T. Study on preparation and properties of polyimide composite aerogel. Ph. D. Thesis, Donghua University, China, 2021 (in Chinese).
吴婷婷. 聚酰亚胺复合气凝胶的制备及性能研究. 博士学位论文, 东华大学, 2021.
32 Zhang H, Fan X, Chen W, et al. Composites Part B:Engineering, 2022, 228, 109405.
33 Li D, Lu Z, Ke Z, et al. Polymer, 2024, 290, 126478.
34 Li B, Jiang S, Yu S, et al. Journal of Sol-Gel Science and Technology, 2018, 88, 386.
35 Losego M D, Grady M E. Nature Materials, 2012, 11(6), 502.
36 Diaz J A, Ye Z, Wu X, et al. Biomacromolecules, 2014, 15(11), 4096.
37 Zhang T, Luo T. The Journal of Physical Chemistry B, 2016, 120(4), 803.
38 Yorifuji D, Ando S. Macromolecules, 2010, 43(18), 7583.
39 Li D, Ke Z, Xu K, et al. Chemical Engineering Journal, 2023, 461, 141722.
40 Dong X, Wan B, Zheng M S, et al. Chemical Engineering Journal, 2023, 465, 143034.
41 Guo H, Meador M A B, Mccorkle L S, et al. RSC Advances, 2016, 6(31), 26055.
42 Meador M A B, Alemán C R, Hanson K, et al. ACS Applied Materials & Interfaces, 2015, 7(2), 1240.
43 Ghanem B S, Swaidan R, Litwiller E, et al. Advanced Materials, 2014, 26(22), 3688.
44 Zheng S, Jiang L, Chang F, et al. ACS Applied Materials & Interfaces, 2022, 14(44), 50129.
45 Zhou H, Jin W. Membranes, 2018, 9(1), 3.
46 Swimm K, Reichenauer G, Vidi S, et al. International Journal of Thermophysics, 2009, 30, 1329.
47 Pollack G L. Reviews of Modern Physics, 1969, 41(1), 48.
48 Yang F, Yao J, Jin L, et al. Composites Part B:Engineering, 2022, 243, 110161.
49 Yao J, Zhou J, Yang F, et al. Nano Research, 2024, 17(4), 3359.
50 Pan Y, Zheng J, Xu Y, et al. Journal of Colloid and Interface Science, 2022, 628, 829.
51 Tian J, Yang Y, Xue T, et al. Journal of Materials Science & Technology, 2022, 105, 194.
52 Yao K, Song C, Fang H, et al. Engineering, 2023, 21, 152.
53 Xiao Z, Che J, Li H, et al. Materials Chemistry Frontiers, 2022, 6(4), 482.
54 Li J, Zhang L, Pang Y, et al. Composites Part A:Applied Science and Manufacturing, 2022, 161, 107112.
55 Zhang T, Zhao Y, Li X, et al. Microporous and Mesoporous Materials, 2021, 319, 111074.
56 Zhou L, Wu L, Wu T, et al. Materials Today Nano, 2023, 22, 100306.
57 Wang L, Feng J, Zhang S, et al. Additive Manufacturing, 2023, 71, 103583.
58 Kargar F, Barani Z, Salgado R, et al. ACS Applied Materials & Interfaces, 2018, 10(43), 37555.
59 Tafreshi O A, Ghaffari-Mosanenzadeh S, Rejeb Z B, et al. Materials Today Sustainability, 2023, 22, 100403.
60 Yang J, Lu J, Xi S, et al. Journal of Materials Chemistry A, 2023, 11(39), 21272.
61 Li N, Shi J F, Zou K K, et al. ACS Applied Materials & Interfaces, 2023, 15(21), 25990.
62 Sun Z, Chen J, Jia X, et al. Materials Today Physics, 2021, 21, 100521.
63 Zhao Y, Chen J, Lai X, et al. Composites Part A:Applied Science and Manufacturing, 2022, 163, 107210.
64 Jiang C, Chen J, Lai X, et al. Chemical Engineering Journal, 2022, 434, 134630.
65 Xue T, Fan W, Zhang X, et al. Composites Part B:Engineering, 2021, 219, 108963.
66 Taki K. Chemical Engineering Science, 2008, 63(14), 3643.
67 Li J W. The research on the preparation of copolymerizedpolyimide foams and their structure and performance. Ph. D. Thesis, Northwestern Polytechnical University, China, 2018 (in Chinese).
李建伟. 共聚型聚酰亚胺泡沫材料的制备及其结构与性能研究. 博士学位论文, 西北工业大学, 2018.
68 Zhao X H, Zhang G C, Zhang Y Z, et al. Synthetic Resins and Plastics, 2008, 25(6), 33 (in Chinese).
赵玺浩, 张广成, 张悦周, 等. 合成树脂及塑料, 2008, 25(6), 33.
69 Li Q, Dong J, Li X T, et al. The Chemical World, 2023, 64(4), 229 (in Chinese).
李强, 董杰, 李琇廷, 等. 化学世界, 2023, 64(4), 229.
70 Xiao H, Lv J, Tan W, et al. Chemical Engineering Journal, 2022, 450, 138344.
71 Hübner C, Vadalà M, Voges K, et al. Scientific Reports, 2023, 13(1), 1020.
72 Liu R, Xu T, Wang C. Ceramics International, 2016, 42(2), 2907.
73 Deville S, Maire E, Lasalle A, et al. Journal of the American Ceramic Society, 2010, 93(9), 2507.
74 Ma S, Wang C, Cong B, et al. Chemical Engineering Journal, 2022, 431, 134047.
75 Yin K, Divakar P, Wegst U G K. Biomacromolecules, 2019, 20(10), 3733.
76 Wang C, Chen X, Wang B, et al. ACS Nano, 2018, 12(6), 5816.
77 Mi A, Guo L, Guo S, et al. Sustainable Materials and Technologies, 2024, 39, e00830.
78 Li M, Gan F, Dong J, et al. ACS Applied Materials & Interfaces, 2021, 13(8), 10416.
79 Xue T, Zhu C, Feng X, et al. Advanced Fiber Materials, 2022, 4(5), 11.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[3] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[4] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[5] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[6] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[7] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[8] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[9] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[10] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[11] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[12] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[13] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[14] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[15] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed