Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23110193-7    https://doi.org/10.11896/cldb.23110193
  无机非金属及其复合材料 |
多孔Fe24Cr金属支撑体厚度对SOFC性能的影响
王丕1,2, 宋琛2,*, 董东东2, 曾德长1, 刘太楷2, 文魁2, 毛杰2, 刘敏2
1 华南理工大学材料科学与工程学院, 广州 510641
2 广东省科学院新材料研究所, 现代材料表面工程技术国家工程实验室, 广东省现代表面工程技术重点实验室, 广州 510650
Effect of Thickness of Porous Fe24Cr Metal Support on SOFC Performance
WANG Pi1,2, SONG Chen2,*, DONG Dongdong2, ZENG Dengchang1, LIU Taikai2, WEN Kui2, MAO Jie2,LIU Min2
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
2 National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Lab of Guangdong for Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 10233KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属支撑型固体氧化物燃料电池(MS-SOFC)因成本低、力学性能好、可快速启停等优点,有望应用于无人机、便携式、移动式电源领域。为提高MS-SOFC性能与寿命,金属支撑体不仅需要与电解质热膨胀系数匹配以减少应力,还需要高透气性以提高燃料气体的扩散及反应速度。因此,本工作制备了厚度分别为1 mm、0.8 mm、0.5 mm的三种不同Fe24Cr支撑体,对比研究其与传统430支撑体的热膨胀系数,系统探究了厚度对支撑体透气性和SOFC电化学性能的影响。研究结果表明,Fe24Cr支撑体的热膨胀系数为12.74×10-6 K-1,比传统430支撑体更加适配氧化锆基电解质。0.5 mm厚Fe24Cr支撑体可明显缩短气体传输路径,相较1 mm 厚Fe24Cr支撑体透气量提高约5倍,输出性能增长15%以上;800 ℃下电池的极化阻抗和欧姆阻抗分别降至0.203 Ω·cm2和0.118 Ω·cm2,峰值功率密度达1.215 W/cm2。采用弛豫时间分布(DRT)方法分析的结果表明,支撑体厚度的减薄对SOFC的欧姆阻抗和H2扩散至三相反应界面的速率有较大贡献,可以和电池的电化学性能规律吻合良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丕
宋琛
董东东
曾德长
刘太楷
文魁
毛杰
刘敏
关键词:  金属支撑型SOFC  支撑体厚度  热膨胀系数  透气性  电化学性能    
Abstract: The metal-supportedsolid oxide fuel cell (MS-SOFC) is expected to be used in unmanned aerial vehicles, portable power and mobile powers due to its advantages such as low cost, good mechanical properties and fast start-stop capability. In order to improve the performance and lifetime of MS-SOFC, the metal support not only needs to match the thermal expansion coefficient of electrolyte to reduce stress, but also needs high permeability to improve the diffusion and reaction rate of fuel gas. In this work, three kinds of Fe24Cr supports with different thickness of 1 mm, 0.8 mm and 0.5 mm were prepared, and their coefficient of thermal expansion were compared with the traditional 430 support. Meanwhile, the effects of the thickness on the air permeability and electrochemical performance of the support were investigated. The results showed that the coefficient of thermal expansion of Fe24Cr support is 12.74×10-6 K-1, which is more suitable for zirconia-based electrolyte than the traditional 430 support. Comparing with the 1 mm thick support, the 0.5 mm thick Fe24Cr support can significantly shorten the gas transmission path, increase the gas permeability by about 5 times and increase the output performance by more than 15%. At 800 ℃ the polarization impedance and ohmic impedance of the cell decrease to 0.203 Ω·cm2 and 0.118 Ω·cm2 respectively, and the peak power density reaches 1.215 W/cm2. The distribution of relaxation times (DRT) analysis showed that the reduction of the support thickness contributes greatly to the ohmic impedance of SOFC and the rate of H2 diffusion to the three-phase reaction interface, which can be matched well with the electrochemical performance results of the cell.
Key words:  metal-supported SOFC    thickness of the substrates    coefficient of thermal expansion    gas permeability    electrochemical perfor-mance
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TK91  
基金资助: 国家重点研发计划(2023YFE0108000);国家自然科学基金(52201069);中国科协青年人才托举项目(2022QNRC001);广东省科学院项目(2022GDASZH-2022010201;2022GDASZH-2022010203-003;2022GDASZH-2022030501-06);广东省科学院新材料研究所专项资金项目(2023GINMZX-202301020104)
通讯作者:  *宋琛,博士,广东省科学院新材料研究所,高级工程师,目前主要从事热喷涂金属支撑型固体氧化物燃料电池的研究。phd.songchen@gmail.com   
作者简介:  王丕,华南理工大学材料科学与工程学院硕士研究生,在曾德长教授和刘敏教授的指导下进行研究。目前主要研究领域为金属支撑型固体氧化物燃料电池。
引用本文:    
王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
WANG Pi, SONG Chen, DONG Dongdong, ZENG Dengchang, LIU Taikai, WEN Kui, MAO Jie,LIU Min. Effect of Thickness of Porous Fe24Cr Metal Support on SOFC Performance. Materials Reports, 2025, 39(1): 23110193-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110193  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23110193
1 Minh N Q, Shirley Meng Y. MRS Bulletin, 2019, 44(9), 682.
2 Mcpherson M, Johnson N, Strubegger M. Applied Energy, 2018, 216, 649.
3 Weber A. Fuel Cells, 2021, 21(5), 440.
4 Opakhai S, Kuterbekov K. Energies, 2023, 16(12), 4700.
5 Baldi F, Moret S, Tammi K, et al. Energy, 2020, 194, 116811.
6 Boldrin P, Brandon N P. Nature Catalysis, 2019, 2(7), 571.
7 Corigliano O, Pagnotta L, Fragiacomo P. Sustainability, 2022, 14(22), 15276.
8 Molin S, Chrzan A, Karczewski J, et al. Electrochimica Acta, 2016, 204, 136.
9 Lyu Y, Wang F, Wang D, et al. Materials Technology, 2019, 35(4), 212.
10 Chang H, Yan J, Chen H, et al. Ceramics International, 2019, 45(8), 9866.
11 Wei J, Osipova T, Malzbender J, et al. Ceramics International, 2018, 44(10), 11094.
12 Xu X H, Wu Y H, Yan Z L, et al. Advances in Mechanics, 2021, 51(1), 62 (in Chinese).
徐心海, 吴愉华, 严资林, 等. 力学进展, 2021, 51(1), 62.
13 Zhuang L L, Jin S T. Gansu Metallurgy, 2022, 44(2), 61 (in Chinese).
庄丽丽, 靳塞特. 甘肃冶金, 2022, 44(2), 61.
14 Tietz F. Ionics, 1999, 5, 129.
15 Öztürk B, Topcu A, Cora Ö N. Powder Technology, 2021, 382, 199.
16 Brandner M, Bram M, Froitzheim J, et al. Solid State Ionics, 2008, 179(27-32), 1501.
17 Bernadet L, Segura-Ruiz J, Yedra L, et al. Journal of Power Sources, 2023, 555, 232400.
18 Molin S, Gazda M, Jasinski P. Solid State Ionics, 2010, 181(25-26), 1214.
19 Oishi N, Yoo Y. ECS Transactions, 2009, 25(2), 739.
20 Cheng L. Phase-inversion fabricationand characterization of solid oxide cells. Ph. D. Thesis, University of Science and Technology of China, China, 2015 (in Chinese).
陈龙. 固体氧化物电池的相转化法制备和性能表征. 博士学位论文, 中国科学技术大学, 2015.
21 Hwang C S, Tsai C H, Hwang T J, et al. Fuel Cells, 2016, 16(2), 244.
22 Nielsen J, Persson Å H, Muhl T T, et al. Journal of the Electrochemical Society, 2018, 165(2), F90.
23 Du K, Song C, Yu M, et al. Journal of the Chinese Ceramic Society, 2022, 50(7), 1929 (in Chinese).
杜柯, 宋琛, 余敏, 等. 硅酸盐学报, 2022, 50(7), 1929.
24 Zhu Z G, Song C, Hu Y J, et al. Materials Research and Application, 2023, 17(2), 329 (in Chinese).
朱志刚, 宋琛, 胡永俊, 等. 材料研究与应用, 2023, 17(2), 329.
25 Wen J, Song C, Deng Z Q, et al. Materials Research and Application, 2020, 14(2), 116 (in Chinese).
温靖, 宋琛, 邓子谦, 等. 材料研究与应用, 2020, 14(2), 116.
26 Wen K, Liu X Z, Shao Z J, et al. Materials Research and Application, 2022, 16(1), 29 (in Chinese).
文魁, 刘学璋, 邵祉谏, 等. 材料研究与应用, 2022, 16(1), 29.
27 Manjunath N, Santhy K, Rajasekaran B. Materials Today:Proceedings, DOI: 202310.1016/j. matpr. 2023. 03. 113.
28 Dong L F, Zhang X, Dou W Y, et al. Powder Metallurgy Industry, 2016, 26(5), 25 (in Chinese).
董领峰, 张旭, 窦微英, 等. 粉末冶金工业, 2016, 26(5), 25.
29 Zhang J, Guo H, Lei L, et al. Journal of Power Sources, 2023, 562, 232725.
30 Zhang J, Lei L, Li H, et al. Journal of Power Sources, 2021, 516, 230678.
31 Fang Q, Blum L, Stolten D. ECS Transactions, 2019, 91(1), 687.
32 Fang Q, De Haart U, Schäfer D, et al. Journal of the Electrochemical Society, 2020, 167(14).
33 Xia J, Wang C, Wang X, et al. Electrochimica Acta, 2020, 349, 136328.
34 Wang Y, Marchetti B, Zhou X D. International Journal of Hydrogen Energy, 2022, 47(83), 35437.
35 Tsai C H, Yang C S, Chang C, et al. Fuel Cells, 2023, 23(4), 292.
[1] 孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
[2] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[3] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[4] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[5] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[6] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[7] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[8] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[9] 钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
[10] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[11] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[12] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[13] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[14] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[15] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed