Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23100131-7    https://doi.org/10.11896/cldb.23100131
  无机非金属及其复合材料 |
溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究
孔德茹1, 刘靖2,*, 杨晓林1, 孙冬兰1, 张进康1
1 天津科技大学理学院, 天津 300457
2 天津科技大学化工与材料学院, 天津 300457
Effect of Bi-functional Complexing Agent on Properties of Aluminum Doped Zinc Oxide in Sol-Gel-Combustion Method
KONG Deru1, LIU Jing2,*, YANG Xiaolin1, SUN Donglan1, ZHANG Jinkang1
1 Faculty of Science, Tianjin University of Science and Technology, Tianjin 300457, China
2 School of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China
下载:  全 文 ( PDF ) ( 5138KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过溶胶-凝胶-燃烧法在不同的双功能络合剂——乙醇胺(MEA)、柠檬酸(CA)或乙酰丙酮(ACAC)辅助下制备了(002)取向的掺铝氧化锌(AZO)粉末。对所制备粉末的物相结构、形貌和光学性能进行表征,进一步利用所制备的AZO粉末对亚甲基蓝溶液(MB)进行光催化降解研究。结果表明:采用不同的络合剂时,所有样品均为沿(002)方向择优取向的AZO粉末;其中以ACAC作络合剂时制备的AZO粉末呈粒径27.8 nm左右的球形结构,禁带宽度为3.129 eV,光致发光强度优于其他两种粉末,降解MB溶液的效率可达98%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔德茹
刘靖
杨晓林
孙冬兰
张进康
关键词:  AZO粉末  溶胶-燃烧-煅烧法  络合剂  光催化    
Abstract: In this work, (002) oriented aluminum-doped zinc oxide (AZO) powder had been prepared with different bi-functional complexing agents—ethanolamine (MEA), citric acid (CA), or acetylacetone (ACAC) via the sol-gel-combustion method. X-ray powder diffraction (XRD), scanning electron microscope (SEM), UV-Vis spectroscope (UV-Vis) and photoluminescence spectroscope (PL) were applied to characterize the phase structure, morphology, and optical properties of the AZO prepared. Furthermore, these AZO powders were evaluated in the photocatalytic degradation of methylene blue solution (MB). The results showed that when different complexing agents were used, all powder products had the same pure phase structures of AZO with preferred orientation along the (002) direction;the AZO powder prepared with ACAC as the complexing agent demonstrated spherical particles with a particle of 27.8 nm, a bandgap width of 3.129 eV, and it's photoluminescence intensity was superior to the other two powders. It's efficiency of MB degradation solution could reach 98%.
Key words:  AZO powder    sol-gel-combustion method    complexing agent    photocatalysis
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TQ132.41  
基金资助: 国家自然科学基金(21373150)
通讯作者:  *刘靖,天津科技大学化工与材料学院副教授。主要从事锂离子电池电解液中功能性有机添加剂的合成及应用研究,生物质聚合物合成及应用研究,纳米/微米结构的导电聚吡咯、聚苯胺及其复合物的相关科研工作。jingliu@tust.edu.cn   
作者简介:  孔德茹,天津科技大学硕士研究生,在孙冬兰教授和刘靖副教授的指导下进行研究。目前主要研究方向为AZO透明导电薄膜及光催化AZO纳米粉末。
引用本文:    
孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
KONG Deru, LIU Jing, YANG Xiaolin, SUN Donglan, ZHANG Jinkang. Effect of Bi-functional Complexing Agent on Properties of Aluminum Doped Zinc Oxide in Sol-Gel-Combustion Method. Materials Reports, 2025, 39(1): 23100131-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100131  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23100131
1 Puri N, Gupta A. Environmental Research, 2023, 227, 115786.
2 Xie F, Guo J F, Wang H T, et al. Journal of Materials Research, 2023, 37(1), 10 (in Chinese).
谢锋, 郭建峰, 王海涛, 等. 材料研究学报, 2023, 37(1), 10.
3 Manickam A, Selvakumaran D, Narendran K, et al. Chemical Physics Letters, 2022, 800, 139662.
4 Al-Nuaim M A, Alwasiti A A, Shnain Z Y. Chemical Papers, 2023, 77, 677.
5 Jiang Z, Ye Z, Shangguan W. Frontiers in Energy, 2022, 16, 49.
6 Atta-Eyison A A, Anukwah G D, Zugle R. Catalysis Communications, 2021, 160, 106357.
7 Lee K M, Lai C W, Ngai K S, et al. Water Research, 2016, 88, 428.
8 Ramos P G, Sánchez L A, Rodriguez J M. Journal of Sol-Gel Science and Technology, 2022, 102, 105.
9 Sun H, Lee S Y, Park S J. Journal of Colloid and Interface Science, 2023, 629, 87.
10 Yu X C, Dang K L, Song Z Y, et al. Materials Reports, 2020, 34(14), 14003 (in Chinese).
于晓晨, 党快乐, 宋泽钰, 等. 材料导报, 2020, 34(14), 14003.
11 Zhou X B, Chen J L, Hu Y Y, et al. Chemical Novel Materials, 2019, 47(4), 47 (in Chinese).
周先波, 陈嘉磊, 胡亚一, 等. 化工新型材料, 2019, 47(4), 47.
12 Bhapkar A R, Geetha M, Jaspal D, et al. Applied Nanoscience, 2023, 13, 1.
13 Chen K J, Fang T H, Hung F Y, et al. Applied Surface Science, 2008, 254, 5791.
14 Abireha A, Habtu N G, Desissa T D, et al. Poly Journal of Engineering and Technology (PJET), 2023, 1, 13.
15 Znaidi L. Materials Science and Engineering B, 2010, 174, 18.
16 Gherab K, Al-Douri Y, Hashim U, et al. Bulletin of Materials Science, 2021, 44, 1.
17 Burunkaya E, Kiraz N, Kesmez Ö, et al. Journal of Sol-Gel Science and Technology, 2010, 55, 171.
18 Stanković A, Dimitrijević> S, Uskoković> D. Colloids and Surfaces B:Biointerfaces, 2013, 102, 21.
19 Khodja S, Touam T, Chelouche A, et al. Superlattices and Microstructures, 2014, 75, 485.
20 Wang J, Cao X, Liu S, et al. Ceramics International, 2020, 46, 17659.
21 Jang Y J, Simer C, Ohm T. Materials Research Bulletin, 2006, 41, 67.
22 Basnet P, Chanu T I, Samanta D, et al. Journal of Photochemistry and Photobiology B:Biology, 2018, 183, 201.
23 Wannes H B, Zaghouani R B, Ouertani R, et al. Materials Science in Semiconductor Processing, 2018, 74, 80.
24 Zhao T T, Xue J M, Wang W, et al. Electronic Devices, 2019, 42(1), 5 (in Chinese).
赵婷婷, 薛剑鸣, 王威, 等. 电子器件, 2019, 42(1), 5.
25 Kurian M, Nair D S. Journal of Saudi Chemical Society, 2016, 20, S517.
26 Shi Q K, Li Q, Li L H, et al. Electronic Components and Materials, 2018, 37(2), 25 (in Chinese).
师清奎, 李谦, 李丽华, 等. 电子元件与材料, 2018, 37(2), 25.
27 Nishio J, Tokumura M, Znad H T, et al. Journal of Hazardous Materials, 2006, 138, 106.
28 Mayandi J, Madathil R, Abinaya C, et al. Materials Letters, 2021, 288, 129352.
29 Koralli P, Fiat Varol S, Mousdis G, et al. Chemosensors, 2022, 10, 162.
30 Moezzi A, McDonagh A M, Cortie M B. Chemical Engineering Journal, 2012, 185, 1.
31 Alwan R M, Kadhim Q A, Sahan K M, et al. Nanoscience and Nanotechnology, 2015, 5, 1.
32 Yu J Z, Wei L J, Cui Z W. Journal of Functional Materials, 2020, 51(7), 7097 (in Chinese).
尉金枝, 卫灵君, 崔政伟. 功能材料, 2020, 51(7), 7097.
33 Krishnakumar V, Elansezhian R. Materials Today:Proceedings, 2022, 51, 369.
34 Shivaraj B, Murthy H N, Krishna M, et al. Procedia Materials Science, 2015, 10, 292.
35 Lin Y, Hu H, Hu Y H. Applied Surface Science, 2020, 502, 144202.
36 Lu Q F, Hao X X, Feng Y, et al. Materials Reports, 2024, 38(13), 22060298 (in Chinese).
陆泉芳, 郝小霞, 冯妍, 等. 材料导报, 2024, 38(13), 22060298.
37 Zhou L C. Journal of Materials Research, 2023, 38(2), 141 (in Chinese).
周立臣. 材料研究学报, 2023, 38(2), 141.
38 Borah J, Sarma B K. Journal of Alloys and Compounds, 2023, 956, 170312.
39 Jia W, Cheng X, Yuan X Y. New Chemical Materials, 2022, 50(1), 171 (in Chinese).
贾雯, 程鑫, 袁小亚. 化工新型材料, 2022, 50(1), 171.
40 Makuła P, Pacia M, Macyk W. The Journal of Physical Chemistry Letters, 2018, 9, 6814.
41 Kołodziejczak-Radzimska A, Jesionowski T. Materials, 2014, 7, 2833.
42 Vasei H V, Masoudpanah S, Pouya V K. Journal of Physics and Chemistry of Solids, 2021, 151, 109895.
43 Weldegebrieal G K. Inorganic Chemistry Communications, 2020, 120, 108140.
44 Wang N N, Li J W, Liu W, et al. Materials Reports, 2022, 36(4), 20090212 (in Chinese).
王南南, 李继文, 刘伟, 等. 材料导报, 2022, 36(4), 20090212.
45 Liu Zitong, You Niewei, Zhu Yabin, et al. Acta Optica Sinica, 2022, 42(5), 0536001 (in Chinese).
刘姿彤, 尤聂薇, 朱亚彬, 等. 光学学报, 2022, 42(5), 0536001.
46 Yuan W, Pang R, Wang S, et al. Light:Science & Applications, 2022, 11, 184.
47 Wang Y, Tan G Q, Miao H Y, et al. Rare Metal Materials and Engineering, 2011, 40(S1), 32 (in Chinese).
王艳, 谈国强, 苗鸿雁, 等. 稀有金属材料与工程, 2011, 40(S1), 32.
48 Swinehart D F. Journal of Chemical Education, 1962, 39, 333.
49 Luo K Y, Yuan H, Liu Y T, et al. Materials Reports, 2020, 34(4), 4013 (in Chinese).
罗凯怡, 袁欢, 刘禹彤, 等. 材料导报, 2020, 34(4), 4013.
50 Saroha J, Rani E, Devi M, et al. Materials Today Sustainability, 2023, 23, 100466.
51 Jadoun S, Yáñez J, Mansilla H D, et al. Environmental Chemistry Letters, 2022, 20, 2063.
52 Shahi S K, Sandhu S, Kaur N, et al. New Journal of Chemistry, 2022, 46, 18865.
[1] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[2] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[3] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[4] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[5] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[6] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[7] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[8] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[9] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[10] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[11] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[12] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[13] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[14] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[15] 梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed