Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23100044-9    https://doi.org/10.11896/cldb.23100044
  无机非金属及其复合材料 |
大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响
张彩利1,2,*, 王怀毅1,2, 王犇3,*, 于焱龙1,2, 张崇僖1,2
1 河北工业大学土木与交通学院, 天津 300401
2 天津市交通工程绿色材料技术工程中心, 天津 300401
3 黑龙江龙高公路养护工程有限公司, 哈尔滨 150000
Characterization of the Porous Structure and Its Influence on Mechanical Properties of High-Content Steel Slag Powder-Cement Foamed Concrete
ZHANG Caili1,2,*, WANG Huaiyi1,2, WANG Ben3,*, YU Yanlong1,2, ZHANG Chongxi1,2
1 School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
2 Tianjin Traffic Engineering Green Material Technology Engineering Center, Tianjin 300401, China
3 Heilongjiang Longgao Highway Maintenance Engineering Co.,Ltd., Harbin 150000, China
下载:  全 文 ( PDF ) ( 26447KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究大掺量钢渣微粉-水泥泡沫轻质土中孔隙结构与力学性能的关系,采用计算机断层扫描技术(X-CT)分析不同钢渣微粉掺量、水灰比、湿密度等级条件下泡沫轻质土孔结构特征参数的变化规律,并运用灰色关联方法分析孔结构特征参数与抗压强度之间的关系。研究结果表明,钢渣微粉掺量增加、湿密度等级降低f都将导致孔隙率增大、球度值降低、孔径增大;球度值、孔径随水灰比增大而增大,孔隙率则与水灰比成负相关关系;主要孔隙类型为球状孔隙且球度值与孔体积呈负相关关系;孔结构特征参数均与泡沫轻质土抗压强度关系紧密,其中孔隙率对强度影响最大,且孔径小于0.5 mm和0.5~1 mm之间的孔隙对抗压强度影响最大;孔隙形状中球状孔隙灰关联度最大且越近似球状的孔隙对抗压强度影响越大。研究结果对钢渣废弃物资源化循环利用有一定借鉴意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张彩利
王怀毅
王犇
于焱龙
张崇僖
关键词:  钢渣微粉  泡沫轻质土  抗压强度  孔隙率  灰色关联度    
Abstract: To investigate the relationship between pore structure and mechanical properties in high-content steel slag powder foamed concrete, X-ray computer tomography (X-CT) technology wasused to analyze variations of pore structure characteristic parameters of foamed concrete under different conditions, including steel slag powder content, water-cement ratios, and wet density levels. Meanwhile, using the grey correlation theory, analyzed the correlation between various pore structure characteristic parameters and mechanical properties of the concrete. The results revealed that an increase in steel slag powder content, or a decrease in wet density levels should lead to an increase of porosity, a decrease of sphericity values, and an increase of pore sizes. Conversely, an increase of water-cement ratio should decrease porosity, increase sphericity values, and enlarge pore sizes. Spherical pores are the predominant pore type, and there is a negative correlation between sphericity values and pore volume. Characteristic parameters of pore structure are closely related to the compressive strength, and porosity has the greatest influence on the compressive strength. And the pore size smaller than 0.5 mm and between 0.5 mm to 1 mm have the greatest influence on compressive strength. Considering pore shapes, spherical pores exhibit the highest grey correlation, which indicates that the more similar the spherical pore has the greater influence on compressive strength. These findings hold practical implications for the resourceful recycling of steel slag waste.
Key words:  steel slag powder    foamed concrete    compressive strength    porosity    grey correlation degree
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  U414  
基金资助: 国家自然科学基金(52008154);河北省自然科学基金(E2021202074)
通讯作者:  *张彩利,河北工业大学土木与交通学院副教授、硕士研究生导师。2004年长安大学道路与铁道工程专业硕士毕业后到河北工业大学工作至今,2012年河北工业大学结构工程专业博士毕业。目前主要从事固废资源化利用、新型道路建筑材料、路面养护新技术等方向的理论与试验研究。zhangcailimeng@163.com;王犇,硕士。主要从事固废资源化利用与新型建筑材料方面的研究。Wb17602210485@163.com   
引用本文:    
张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
ZHANG Caili, WANG Huaiyi, WANG Ben, YU Yanlong, ZHANG Chongxi. Characterization of the Porous Structure and Its Influence on Mechanical Properties of High-Content Steel Slag Powder-Cement Foamed Concrete. Materials Reports, 2025, 39(1): 23100044-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100044  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23100044
1 Raj A, Sathyan D, Mini K M. Construction and Building Materials, 2019, 221, 787.
2 Cai L, Chen Z P, Wu L J. Journal of Highway and Transportation Research and Development, 2005, 22(12), 71(in Chinese).
蔡力, 陈忠平, 吴立坚. 公路交通科技, 2005, 22(12), 71.
3 Hou M Y, Zhu X C, Li G Q, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(2), 410(in Chinese).
侯明昱, 朱先昌, 李国青, 等. 硅酸盐通报, 2019, 38(2), 410.
4 Song Q, Zhang P, Bao J W, et al. Journal of the Chinese Ceramic Society, 2021, 49(2), 398(in Chinese).
宋强, 张鹏, 鲍玖文, 等. 硅酸盐学报, 2021, 49(2), 398.
5 Xia X H, Ye L J, Wu D G, et al. Concrete, 2022, 44(8), 148(in Chinese).
夏新华, 叶林杰, 吴迪高, 等. 混凝土, 2022, 44(8), 148.
6 Yang Y. Railway Engineering, 2022, 62(1), 135(in Chinese).
杨莹. 铁道建筑, 2022, 62(1), 135.
7 Cao Q G. Railway Engineering, 2022, 62(2), 141(in Chinese).
曹乾桂. 铁道建筑, 2022, 62(2), 141.
8 Shah S N, Mo K H, Yap S P, et al. Resources, Conservation & Recycling, 2021, 164, 105103.
9 Kourounis S, Tsivilis S, Tsakiridis P E, et al. Cement and Concrete Research, 2007, 37(6), 815.
10 Shi C. Cement and Concrete Research, 2002, 32(3), 459.
11 Huang Y, Xu G P, Cheng H G, et al. Bulletin Of The Chinese Ceramic Society, 2014, 33(8), 1902(in Chinese).
黄毅, 徐国平, 程慧高, 等. 硅酸盐通报, 2014, 33(8), 1902.
12 Zou M, Shen Y, Liu J H. Bulletin Of The Chinese Ceramic Society, 2021, 40(9), 2964(in Chinese).
邹敏, 沈玉, 刘娟红. 硅酸盐通报, 2021, 40(9), 2964.
13 Wu Y D, Peng B, Wu L, et al. Environmental Engineering, 2021, 39(1), 161(in Chinese).
吴跃东, 彭犇, 吴龙, 等. 环境工程, 2021, 39(1), 161.
14 Zhao Z F, Wang X F, Wang G D, et al. Bulletin Of The Chinese Ceramic Society, 2022, 41(6), 2108(in Chinese).
赵正峰, 王笑风, 王国栋, 等. 硅酸盐通报, 2022, 41(6), 2108.
15 Peng X Q, Li S, Liu Z. Non-Metallic Mines, 2016, 39(3), 17(in Chinese).
彭小芹, 李三, 刘朝. 非金属矿, 2016, 39(3), 17.
16 He Z H, Zhang X X, Zhan P M, et al. Concrete, 2020(2), 83(in Chinese).
何智海, 张晓翔, 詹培敏, 等. 混凝土, 2020(2), 83.
17 Guo J, Bao Y, Wang M. Waste Management, 2018, 78, 318.
18 Zhao L J, Zhang F. Materials Reports, 2020, 34(S2), 1319 (in Chinese).
赵立杰, 张芳. 材料导报, 2020, 34(S2), 1319.
19 Saynbaatar, Qiqige, Ma G P, et al. In:6th International symposium on high-temperature metallurgical processing. Berlin, 2015, pp. 469.
20 Yuan Z, Jin Q, Wang X H, et al. New Building Materials, 2019, 46(6), 91(in Chinese).
袁振, 晋强, 王秀红, 等. 新型建筑材料, 2019, 46(6), 91.
21 Wang Q, Yan P, Han S. Science China Technological Sciences, 2011, 54(2), 388.
22 Wu W J, Liu J X, Qi L J, et al. Journal of Beijing University of Chemical Technology ( Natural Science), 2016, 43(4), 40(in Chinese).
武伟娟, 刘家祥, 齐立倩, 等. 北京化工大学学报(自然科学版), 2016, 43(4), 40.
23 Dai H Y. Analysis of the relationship between concrete pore structure and macro performance based on Grey correlation. Master's Thesis, Dalian Jiaotong University, China, 2013(in Chinese).
代贺渊. 基于灰关联分析混凝土孔结构与宏观性能的关系. 硕士学位论文, 大连交通大学, 2013.
24 Zeng Z, Li X H, Huang F, et al. Engineering Research Express, 2023, 5(1), 015082.
25 Mehta P K, Monteiro P J M, Carmona-Filho A. Concreto:estrutura, propriedades e materiais, Editora Pini, Brazil, 1994.
26 Nambiar E. K K, Ramamurthy K. Cement and Concrete Research, 2007, 37(2), 221.
27 Hu Y L, Hao J G, Zhao X M, et al. Journal of Nanjing University of Science and Technology, 2019, 43(3), 363(in Chinese).
胡艳丽, 郝晋高, 赵向敏, 等. 南京理工大学学报, 2019, 43(3), 363.
28 Gao Z H, Chen B, Chen J L, et al. Journal Of Building Materials, 2023, 26(7), 723(in Chinese).
高志涵, 陈波, 陈家林, 等. 建筑材料学报, 2023, 26(7), 723.
29 Yuan Z Y, Chen B, Chen J L, et al. Acta Materiae Compositae Sinica, 2023, 40(7), 4117(in Chinese).
袁志颖, 陈波, 陈家林, 等. 复合材料学报, 2023, 40(7), 4117.
30 Jin S W, Peng Y. Journal of Chinese Electron Microscopy Society, 2021, 40(3), 257(in Chinese).
金世伟, 彭宇. 电子显微学报, 2021, 40(3), 257.
31 Zhang C L, Wang B, Li T H, et al. China Powder Science and Technology, 2023, 29(2), 55 (in Chinese).
张彩利, 王犇, 李天豪, 等. 中国粉体技术, 2023, 29(2), 55.
32 Guo Y Z, Chen X D, Ning Y J, et al. Journal of Building Materials, 2022, 25(9), 885(in Chinese).
郭玉柱, 陈徐东, 宁英杰, 等. 建筑材料学报, 2022, 25(9), 885.
33 Chen J J, Qin Y J, Xiao J Z, et al. Journal of Building Materials, 2021, 24(6), 1179(in Chinese).
陈洁静, 秦拥军, 肖建庄, 等. 建筑材料学报, 2021, 24(6), 1179.
[1] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[2] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[3] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[4] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[5] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[6] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[7] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[8] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[9] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[10] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[11] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[12] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[13] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[14] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[15] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed