Study on Microstructure, Hydrogen Transportation Behavior and Corrosion Resistance of V-Ti-Fe Alloy
MA Dongshuai1, YAN Erhu1,2,*, BAI Jinwang1, WANG Hao1, ZHANG Shuo1, WANG Yihao1, LI Tangwei1, GUO Zhijie1, ZHOU Zirui1, ZOU Yongjin1, SUN Lixian1,*
1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China 2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract: Nb-Ti-Fe duplex alloys have been proven to have excellent hydrogen permeability, which are also expected to become a hydrogen permeable material to replace traditional Pd films. V and Nb belong to the same 5B group, with similar physical and chemical properties. However, the microstructure and hydrogen permeability changes of V-Ti-Fe have not been studied so far. Based on this, studying in detailed the microstructure and hydrogen transportation behavior of V-Ti-Fe ternary alloys, and the possibility of heat treatment and electrochemical corrosion for improving hydrogen permeability are explored. The results show that there is a quasiperitectic solidification reaction in the V-Ti-Fe ternary alloy system, determined as L+TiFe2→V+TiFe (1 626 K). There are three phase regions in the liquid phase projection surface, containing of the TiFe phase region, the TiFe2 phase region and the Bcc-(V, Ti) phase region. Among them, the room temperature structure of the TiFe phase alloy is composed of the primary TiFe phase and the {Bcc-(V, Ti)+TiFe} eutectic structure, the room temperature structure of the TiFe2 phase alloy is composed of the primary TiFe phase, TiFe2 phase and Bcc-(V, Ti) phase, and the room temperature structure of the Bcc-(V, Ti) phase alloy is composed of the primary Bcc-(V, Ti) phase and TiFe phase. Hydrogen permeability test confirmed that the alloy system has weak hydrogen embrittlement resistance. Specifically, the internal cast alloy in the above three regions has undergone different degrees of crushing during the hydrogen permeation experiment, and only the V2.5Ti62.5Fe35 alloy can permeate hydrogen, but the alloy breaks during the hydrogen permeation process. Finally, the hydrogen permeability of the alloy system is improved by two methods, electrochemical corrosion and vacuum heat treatment. Of these alloys, V2.5Ti62.5Fe35 alloy not only has high corrosion resistance, but also possesses excellent hydrogen permeability after heat treatment, and its hydrogen permeability is 1.03×10-9 mol H2 m-1·s-1·Pa-0.5 at 623 K.
通讯作者:
*闫二虎,桂林电子科技大学教授、博士研究生导师。2009年7月本科毕业于河北科技大学,2011年7月和2014年7月在哈尔滨工业大学分别取得工学硕士学位和工学博士学位,毕业后在桂林电子科技大学工作。2018年11月至2019年11月获广西高校优秀教师出国留学深造项目资助赴加拿大国家科学研究院信息-能源材料研究所进行为期一年的访学研究工作。主要从事合金定向凝固理论和新型能源材料方面的研究,主要包含相图热力学计算、多相合金凝固行为和新型渗氢/储氢性能的研究。近五年来在Journal of Membrane Science、Journal of Alloys and Compounds、International Journal of Hydrogen Energy、Journal of Crystal Growth、International Journal of Materials Research、《金属学报》等刊物上发表SCI文章80余篇,申请专利10余项。yeh@guet.edu.cn 孙立贤,桂林电子科技大学教授、博士研究生导师,俄罗斯自然科学院外籍院士,中科院优秀百人计划,广西优秀八桂学者,英国皇家化学会会士。1994年获湖南大学理学博士学位(师从俞汝勤院士);1995.2—1995.4任日本产业技术综合研究所客座研究员 (STA),1995.5—1996.10获洪堡基金(AvH)资助在德国耶拿大学无机分析化学研究所进行合作研究;1996.10—2002.9任日本工业技术院特别研究员(AIST)/产业技术研究员(NEDO)。在Energy & Environmental Science、Journal of Materials Chemistry A、Biosensors & Bioelectronics、Crystal Growth & Design、Journal of Physical Chemistry C、Dalton Transactions、International Journal of Hydrogen Energy等国内外重要学术刊物发表论文330余篇(其中SCI、EI收录300余篇)。sunlx@guet.edu.cn
马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
MA Dongshuai, YAN Erhu, BAI Jinwang, WANG Hao, ZHANG Shuo, WANG Yihao, LI Tangwei, GUO Zhijie, ZHOU Zirui, ZOU Yongjin, SUN Lixian. Study on Microstructure, Hydrogen Transportation Behavior and Corrosion Resistance of V-Ti-Fe Alloy. Materials Reports, 2024, 38(8): 22110007-7.
1 Xu Z J, Wang Z M, Tang J L, et al. Journal of Alloys and Compounds, 2018, 740, 810. 2 Liang X C, Liu P, Zhang Z D, et al. Transport Energy Conservation and Environmental Protection, 2022, 18(2), 31(in Chinese). 梁新成, 刘鹏, 张志冬, 等. 交通节能与环保, 2022, 18(2), 31. 3 Zhang M L, Lu Q J, Lu Q, et al. Journal of Functional Materials, 2023, 54(1), 1229(in Chinese). 张萌玲, 卢清杰, 卢强, 等. 功能材料, 2023, 54(1), 1229. 4 Sun Y, Su W, Zhou L. Hydrogen fuel, Chemical Industry Press, China, 2005, pp.3(in Chinese). 孙艳, 苏伟, 周理. 氢燃料, 化学工业出版社, 2005, pp.3. 5 Chen J, Zhu M. China Material Progress, 2009, 28(5), 1(in Chinese). 陈军, 朱敏. 中国材料进展, 2009, 28(5), 1. 6 Jiang P, Xie Y S, Huang H C, et al. Journal of Changzhou University: Natural Science Edition, 2022, 34(1), 15(in Chinese). 江鹏, 谢寅生, 黄焕超, 等. 常州大学学报: 自然科学版, 2022, 34(1), 15. 7 Jiang P, Guangsheng Song, Daniel Liang, et al. Rare Metal Materials and Engineering, 2017, 46(3), 857(in Chinese). 江鹏, Guangsheng Song, Daniel Liang, 等. 稀有金属材料与工程, 2017, 46(3), 857. 8 Yan E H, Huang H R, Liu G Z, et al. Material Reports, 2018, 32(5), 5(in Chinese). 闫二虎, 黄浩然, 刘贵仲, 等. 材料导报, 2018, 32(5), 5. 9 Hashi K, Ishikawa K, Matsuda T, et al. Journal of Alloys and Compounds, 2004, 368, 215. 10 Yan E H, Wang J H, Zhao P, et al. Materials Today Communications, 2020, 25, 101660. 11 Hashi K, Ishikawa K, Matsuda T, et al. Journal of Alloys and Compounds, 2006, 425, 284. 12 Yan E H, Huang H R, Sun S H, et al. Journal of Membrane Science, 2018, 565, 411. 13 Ishikawa K, Watanabe S, Aoki K. Journal of Alloys and Compounds, 2013, 566, 68. 14 Yan E H, Wang H, Liu W, et al. Journal of Alloys and Compounds, 2022, 901, 163615. 15 Yan E H, Chen Y C, Zhang K X, et al. Separation and Purification Technology, 2021, 257, 117945. 16 Ge X Y, Yan E H, Chen Y C, et al. Material Reports, 2022, 36(18), 218(in Chinese). 葛晓宇, 闫二虎, 陈运灿, 等. 材料导报, 2022, 36(18), 218. 17 Shi F, Wang X D. International Journal of Hydrogen Energy, 2021, 46(1), 1330. 18 Shi F, Song X. Journal of Alloys and Compounds, 2011, 509, L134. 19 Jiang P, Huang H, Sun B, et al. Materials Today Communications, 2020, 24, 101112. 20 Huang F F, Li X Z, Shan X R, et al. Separation and Purification Technology, 2020, 240, 116654. 21 Hu L L, Zhong F, Zhang J, et al. Acta Materialia, 2022, 238, 118204. 22 Guo C, Li C, Zheng X, et al. Calphad, 2012, 38, 155. 23 Shuang S, Ding Z Y, Chung D, et al. Corrosion Science, 2020, 164, 108315. 24 Vida T A, Brito C, Lima T S, et al. Current Applied Physics, 2019, 19, 582. 25 Wang H, Yan E H, Wang X Y, et al. Materials Today Communications, 2021, 29, 102951. 26 Liu D, Li X, Geng H, et al. Journal of Membrane Science, 2018, 553, 171. 27 Wang W, Ishikawa K, Aoki K. Journal of Membrane Science, 2010, 351, 65. 28 Wong T, Suzuki K, Gibson M, et al. Scripta Materialia, 2010, 62(8), 582.