Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22110007-7    https://doi.org/10.11896/cldb.22110007
  金属与金属基复合材料 |
V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究
马东帅1, 闫二虎1,2,*, 白金旺1, 王豪1, 张硕1, 王艺豪1, 李唐卫1, 郭智洁1, 周子锐1, 邹勇进1, 孙立贤1,*
1 桂林电子科技大学广西信息材料重点实验室,广西 桂林 541004
2 中南大学粉末冶金国家重点实验室,长沙 410083
Study on Microstructure, Hydrogen Transportation Behavior and Corrosion Resistance of V-Ti-Fe Alloy
MA Dongshuai1, YAN Erhu1,2,*, BAI Jinwang1, WANG Hao1, ZHANG Shuo1, WANG Yihao1, LI Tangwei1, GUO Zhijie1, ZHOU Zirui1, ZOU Yongjin1, SUN Lixian1,*
1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 22817KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Nb-Ti-Fe双相合金已被证实具有优异的渗氢性能,有望成为替代传统Pd膜的渗氢材料。V和Nb同属于5B族,具有类似的物理化学性质,但是,V-Ti-Fe双相合金组织转变规律和渗氢性能至今无人研究。基于此,本工作对V-Ti-Fe三元合金的显微组织和渗氢行为开展了详细研究,并探索了热处理和电化学腐蚀对改善渗氢性能的可能性。研究结果表明:V-Ti-Fe三元合金体系中存在一个包共晶凝固反应,即L+TiFe2→Bcc-(V,Ti)+TiFe (1 626 K)。液相面投影图中存在三个相区,分别为TiFe相区、TiFe2相区和Bcc-(V,Ti)相区。其中,TiFe相区合金室温组织由初生TiFe相和{Bcc-(V,Ti)+TiFe}共晶结构组成,TiFe2相区合金室温组织由初生TiFe相、TiFe2相和Bcc-(V,Ti)相构成,Bcc-(V,Ti)相区合金室温组织由初生Bcc-(V,Ti)相和TiFe相组成,渗氢性能测试证实了该系合金抗氢脆性能较弱。具体来说,上述三区域内部铸态合金在渗氢实验前均发生了不同程度的破碎,仅V2.5Ti62.5Fe35合金能够渗氢,不过,该合金在渗氢后期发生断裂。最后,本工作采用电化学腐蚀和真空热处理两种方法改善该合金体系的渗氢性能,其中,V2.5Ti62.5Fe35合金具有较高的耐腐蚀性能,经热处理后该合金的渗氢性能明显提升,其在623 K下的氢渗透性能为1.03×10-9 mol H2 m-1·s-1·Pa-0.5
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马东帅
闫二虎
白金旺
王豪
张硕
王艺豪
李唐卫
郭智洁
周子锐
邹勇进
孙立贤
关键词:  V-Ti-Fe合金  显微组织  热处理  耐腐蚀性能  渗氢性能    
Abstract: Nb-Ti-Fe duplex alloys have been proven to have excellent hydrogen permeability, which are also expected to become a hydrogen permeable material to replace traditional Pd films. V and Nb belong to the same 5B group, with similar physical and chemical properties. However, the microstructure and hydrogen permeability changes of V-Ti-Fe have not been studied so far. Based on this, studying in detailed the microstructure and hydrogen transportation behavior of V-Ti-Fe ternary alloys, and the possibility of heat treatment and electrochemical corrosion for improving hydrogen permeability are explored. The results show that there is a quasiperitectic solidification reaction in the V-Ti-Fe ternary alloy system, determined as L+TiFe2→V+TiFe (1 626 K). There are three phase regions in the liquid phase projection surface, containing of the TiFe phase region, the TiFe2 phase region and the Bcc-(V, Ti) phase region. Among them, the room temperature structure of the TiFe phase alloy is composed of the primary TiFe phase and the {Bcc-(V, Ti)+TiFe} eutectic structure, the room temperature structure of the TiFe2 phase alloy is composed of the primary TiFe phase, TiFe2 phase and Bcc-(V, Ti) phase, and the room temperature structure of the Bcc-(V, Ti) phase alloy is composed of the primary Bcc-(V, Ti) phase and TiFe phase. Hydrogen permeability test confirmed that the alloy system has weak hydrogen embrittlement resistance. Specifically, the internal cast alloy in the above three regions has undergone different degrees of crushing during the hydrogen permeation experiment, and only the V2.5Ti62.5Fe35 alloy can permeate hydrogen, but the alloy breaks during the hydrogen permeation process. Finally, the hydrogen permeability of the alloy system is improved by two methods, electrochemical corrosion and vacuum heat treatment. Of these alloys, V2.5Ti62.5Fe35 alloy not only has high corrosion resistance, but also possesses excellent hydrogen permeability after heat treatment, and its hydrogen permeability is 1.03×10-9 mol H2 m-1·s-1·Pa-0.5 at 623 K.
Key words:  V-Ti-Fe alloy    microstructure    heat treatment    corrosion resistance    hydrogen permeability performance
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TG139  
基金资助: 国家自然科学基金(52161034;51761009;U20A20237);广西自然科学基金(2020GXNSFAA159163;2021GXNSFBA075057);广西八桂学者青年拔尖人才基金;桂林电子科技大学研究生教育创新计划项目(2023YCX155);广西信息材料重点实验室基金项目(211012-Z)
通讯作者:  *闫二虎,桂林电子科技大学教授、博士研究生导师。2009年7月本科毕业于河北科技大学,2011年7月和2014年7月在哈尔滨工业大学分别取得工学硕士学位和工学博士学位,毕业后在桂林电子科技大学工作。2018年11月至2019年11月获广西高校优秀教师出国留学深造项目资助赴加拿大国家科学研究院信息-能源材料研究所进行为期一年的访学研究工作。主要从事合金定向凝固理论和新型能源材料方面的研究,主要包含相图热力学计算、多相合金凝固行为和新型渗氢/储氢性能的研究。近五年来在Journal of Membrane Science、Journal of Alloys and Compounds、International Journal of Hydrogen Energy、Journal of Crystal Growth、International Journal of Materials Research、《金属学报》等刊物上发表SCI文章80余篇,申请专利10余项。yeh@guet.edu.cn
孙立贤,桂林电子科技大学教授、博士研究生导师,俄罗斯自然科学院外籍院士,中科院优秀百人计划,广西优秀八桂学者,英国皇家化学会会士。1994年获湖南大学理学博士学位(师从俞汝勤院士);1995.2—1995.4任日本产业技术综合研究所客座研究员 (STA),1995.5—1996.10获洪堡基金(AvH)资助在德国耶拿大学无机分析化学研究所进行合作研究;1996.10—2002.9任日本工业技术院特别研究员(AIST)/产业技术研究员(NEDO)。在Energy & Environmental Science、Journal of Materials Chemistry A、Biosensors & Bioelectronics、Crystal Growth & Design、Journal of Physical Chemistry C、Dalton Transactions、International Journal of Hydrogen Energy等国内外重要学术刊物发表论文330余篇(其中SCI、EI收录300余篇)。sunlx@guet.edu.cn   
作者简介:  马东帅,2020年6月毕业于河北科技大学;获得工学学士学位,现为桂林电子科技大学材料科学与工程学院硕士研究生,在闫二虎教授的指导下进行研究,目前主要研究领域为新型渗氢合金材料。
引用本文:    
马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
MA Dongshuai, YAN Erhu, BAI Jinwang, WANG Hao, ZHANG Shuo, WANG Yihao, LI Tangwei, GUO Zhijie, ZHOU Zirui, ZOU Yongjin, SUN Lixian. Study on Microstructure, Hydrogen Transportation Behavior and Corrosion Resistance of V-Ti-Fe Alloy. Materials Reports, 2024, 38(8): 22110007-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22110007  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22110007
1 Xu Z J, Wang Z M, Tang J L, et al. Journal of Alloys and Compounds, 2018, 740, 810.
2 Liang X C, Liu P, Zhang Z D, et al. Transport Energy Conservation and Environmental Protection, 2022, 18(2), 31(in Chinese).
梁新成, 刘鹏, 张志冬, 等. 交通节能与环保, 2022, 18(2), 31.
3 Zhang M L, Lu Q J, Lu Q, et al. Journal of Functional Materials, 2023, 54(1), 1229(in Chinese).
张萌玲, 卢清杰, 卢强, 等. 功能材料, 2023, 54(1), 1229.
4 Sun Y, Su W, Zhou L. Hydrogen fuel, Chemical Industry Press, China, 2005, pp.3(in Chinese).
孙艳, 苏伟, 周理. 氢燃料, 化学工业出版社, 2005, pp.3.
5 Chen J, Zhu M. China Material Progress, 2009, 28(5), 1(in Chinese).
陈军, 朱敏. 中国材料进展, 2009, 28(5), 1.
6 Jiang P, Xie Y S, Huang H C, et al. Journal of Changzhou University: Natural Science Edition, 2022, 34(1), 15(in Chinese).
江鹏, 谢寅生, 黄焕超, 等. 常州大学学报: 自然科学版, 2022, 34(1), 15.
7 Jiang P, Guangsheng Song, Daniel Liang, et al. Rare Metal Materials and Engineering, 2017, 46(3), 857(in Chinese).
江鹏, Guangsheng Song, Daniel Liang, 等. 稀有金属材料与工程, 2017, 46(3), 857.
8 Yan E H, Huang H R, Liu G Z, et al. Material Reports, 2018, 32(5), 5(in Chinese).
闫二虎, 黄浩然, 刘贵仲, 等. 材料导报, 2018, 32(5), 5.
9 Hashi K, Ishikawa K, Matsuda T, et al. Journal of Alloys and Compounds, 2004, 368, 215.
10 Yan E H, Wang J H, Zhao P, et al. Materials Today Communications, 2020, 25, 101660.
11 Hashi K, Ishikawa K, Matsuda T, et al. Journal of Alloys and Compounds, 2006, 425, 284.
12 Yan E H, Huang H R, Sun S H, et al. Journal of Membrane Science, 2018, 565, 411.
13 Ishikawa K, Watanabe S, Aoki K. Journal of Alloys and Compounds, 2013, 566, 68.
14 Yan E H, Wang H, Liu W, et al. Journal of Alloys and Compounds, 2022, 901, 163615.
15 Yan E H, Chen Y C, Zhang K X, et al. Separation and Purification Technology, 2021, 257, 117945.
16 Ge X Y, Yan E H, Chen Y C, et al. Material Reports, 2022, 36(18), 218(in Chinese).
葛晓宇, 闫二虎, 陈运灿, 等. 材料导报, 2022, 36(18), 218.
17 Shi F, Wang X D. International Journal of Hydrogen Energy, 2021, 46(1), 1330.
18 Shi F, Song X. Journal of Alloys and Compounds, 2011, 509, L134.
19 Jiang P, Huang H, Sun B, et al. Materials Today Communications, 2020, 24, 101112.
20 Huang F F, Li X Z, Shan X R, et al. Separation and Purification Technology, 2020, 240, 116654.
21 Hu L L, Zhong F, Zhang J, et al. Acta Materialia, 2022, 238, 118204.
22 Guo C, Li C, Zheng X, et al. Calphad, 2012, 38, 155.
23 Shuang S, Ding Z Y, Chung D, et al. Corrosion Science, 2020, 164, 108315.
24 Vida T A, Brito C, Lima T S, et al. Current Applied Physics, 2019, 19, 582.
25 Wang H, Yan E H, Wang X Y, et al. Materials Today Communications, 2021, 29, 102951.
26 Liu D, Li X, Geng H, et al. Journal of Membrane Science, 2018, 553, 171.
27 Wang W, Ishikawa K, Aoki K. Journal of Membrane Science, 2010, 351, 65.
28 Wong T, Suzuki K, Gibson M, et al. Scripta Materialia, 2010, 62(8), 582.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[3] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[4] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[5] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[6] 程立宏, 周裕琦, 王建峰, 李柱, 穆战, 占小红. 焊丝成分对国产Invar合金GTAW接头组织差异性的影响[J]. 材料导报, 2024, 38(23): 23080151-6.
[7] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[8] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[9] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[10] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[11] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[12] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[13] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[14] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[15] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed