Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22090022-9    https://doi.org/10.11896/cldb.22090022
  金属与金属基复合材料 |
非晶合金薄膜的复合强韧化研究进展
柯松, 陈卓坤, 艾诚, 李尧, 虢婷*, 孙志平
长安大学材料科学与工程学院,西安 710064
Research Progress on Composite Strengthening and Toughening of Amorphous Alloy Thin Films
KE Song, CHEN Zhuokun, AI Cheng, LI Yao, GUO Ting*, SUN Zhiping
School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
下载:  全 文 ( PDF ) ( 29391KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子行业向便携化、智能化、柔性化方向不断发展,非晶合金薄膜由于强度和硬度高、耐磨损及耐腐蚀性好、表面粗糙度低等诸多性能优势,在微纳机电系统、传感器和生物医学方面显示出巨大的应用潜力,成为国内外炙手可热的高新技术材料之一。然而,剪切局域化和应变软化导致的室温脆性是非晶合金薄膜的致命问题,严重制约着其在结构工程领域中的广泛应用。因此,非晶合金薄膜的强韧化设计是目前的研究热点和前沿课题。近年来,随着生产工业和研发技术不断进步,各种新型非晶合金薄膜材料不断涌现。特别地,复合化具有高度的设计性和可控性,在非晶合金薄膜的强韧化研究方面得到广泛关注。本文回顾了非晶合金复合薄膜的几种主要结构设计策略,围绕“微观结构-力学性能-强韧化机制”的本构关系,重点阐述了不同微观结构对非晶合金薄膜力学性能和变形机理的影响,并对该课题研究进程中所面临的主要问题和挑战进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柯松
陈卓坤
艾诚
李尧
虢婷
孙志平
关键词:  非晶合金  强韧化  复合材料  变形机制  力学行为    
Abstract: With the continuous development of the electronics industry towards the direction of portability, intelligence and flexibility, amorphous alloy films have exhibited great application potential in micro-and nanoelectromechanical systems, sensors and biomedicine, owing to high strength and hardness, good wear and corrosion resistance, low surface roughness, and many other performance advantages. Thus they have become one of the most popular high-tech materials at home and abroad in recent decades. However, the brittleness at room temperature caused by shear localization and strain softening is a fatal problem for amorphous alloy films, which seriously restricts their wide application in the field of structural engineering. Therefore, strengthening and toughening of amorphous alloy films becomes research hotspot and frontier topic. In recent years, with the continuous development of production and research technology, a variety of new amorphous alloy film materials continue emerging. In particular, due to the high designability and controllability, composite has received extensive attention in the study of strengthening and toughening of amorphous alloy thin film. In this paper, we review several important structural design strategies of amorphous alloy composite films. Based on the constitutive relationship of ‘microstructure-mechanical property-strengthening and toughening mechanism', we emphatically describe the influence of different microstructures on mechanical properties and deformation mechanisms of amorphous alloy films. The paper also includes a brief but prospective discussion on main problems and challenges in the research of this subject.
Key words:  amorphous alloy    strengthening and toughening    composite material    deformation mechanism    mechanical behavior
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TG139.8  
基金资助: 陕西省自然科学基础项目(2023-JC-QN-0396);陕西省重点研发计划项目(2023-YBGY-435)
通讯作者:  *虢婷,长安大学材料科学与工程学院讲师。2019年12月获得西安交通大学材料科学与工程专业博士学位。2019年12月底任长安大学材料科学与工程学院材料成型及控制工程系讲师。目前主要从事基于先进金属结构薄膜材料(包括纳米晶、非晶、及相关纳米复合材料)微结构调控、表征及破坏模式和预防相关的研究。目前在国外学术刊物上发表多篇SCI论文,包括Materials Science and Engineering: A、Journal of Alloys and Compounds、Materials Letters等国际知名期刊。guoting27@chd.edu.cn   
作者简介:  柯松,2020年6月毕业于湖北工程学院,获得工学学士学位。现为长安大学材料科学与工程学院硕士研究生,在孙志平教授及虢婷讲师的指导下进行研究。目前主要研究领域为非晶合金薄膜的力学行为和相关变形机制。
引用本文:    
柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
KE Song, CHEN Zhuokun, AI Cheng, LI Yao, GUO Ting, SUN Zhiping. Research Progress on Composite Strengthening and Toughening of Amorphous Alloy Thin Films. Materials Reports, 2024, 38(5): 22090022-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090022  或          https://www.mater-rep.com/CN/Y2024/V38/I5/22090022
1 Woo J H, Park S Y, Koo D, et al. ACS Applied Materials & Interfaces, 2022, 14(4), 5578.
2 Rajan S T, Arockiarajan A. Journal of Alloys and Compounds, 2021, 876, 159939.
3 Li Z, Ma J. Materials Today Advances, 2021, 12, 100164.
4 Liu S Y, Cao Q P, Zhang D X, et al. Advanced Engineering Materials, 2019, 21, 1900046.
5 Jiang Q K, Liu P, Cao Q P, et al. Acta Materialia, 2013, 61(12), 4689.
6 Huang H, Zhang Y. Chinese Journal of Engineering, 2021, 43(1), 119 (in Chinese).
黄浩, 张勇. 工程科学学报, 2021, 43(1), 119.
7 Xian H J, Cao C R, Shi J A, et al. Applied Physics Letters, 2017, 111, 121906.
8 Panagiotopoulos N T, Georgarakis K, Jorge A M, et al. Materials & Design, 2020, 192, 108770.
9 Tian L, Li C Y, Zhai J S, et al. Rare Metals, 2021, 45(8), 998 (in Chinese).
田霖, 李春燕, 翟建树, 等. 稀有金属, 2021, 45(8), 998.
10 Wei X, Feng Z, Yu H C, et al. World Science and Technology Research and Development, 2021, 43(4), 403 (in Chinese).
魏秀, 冯泽, 于汉超, 等. 世界科技研究与发展, 2021, 43(4), 403.
11 Shi B, Wang J H, Wei F A. Materials Reports, 2019, 33(7), 1221 (in Chinese).
时博, 王金辉, 魏福安. 材料导报, 2019, 33(7), 1221.
12 Wang N, Cao Q P, Yao W, et al. Scripta Materialia, 2021, 198, 113832.
13 Ghidelli M, Idrissi H, Gravier S, et al. Acta Materialia, 2017, 131, 246.
14 Jang D, Greer J R. Nature Materials, 2010, 9, 215.
15 Ju L, Shimizu F, Ogata S. Acta Materialia, 2006, 54, 4293.
16 Cao A J, Cheng Y Q, Ma E. Acta Materialia, 2009, 57, 5146.
17 Champion Y, Thurieau N. Scientific Reports, 2020, 10, 10801.
18 Shan Z W, Li J, Cheng Y Q, et al. Physical Review B, 2008, 77, 155419.
19 Deng Q S, Cheng Y Q, Yue Y H, et al. Acta Materialia, 2011, 59, 6511.
20 Sun B, Pauly S, Tan J, et al. Acta Materialia, 2012, 60, 4160.
21 Wu G, Chan K C, Zhu L, et al. Nature, 2017, 545, 80.
22 Wu G, Liu C, Sun L, et al. Nature Communications, 2019, 10, 5099.
23 Chen Z Q, Li M C, Cao J S, et al. Journal of Materials Science & Technology, 2022, 99, 178.
24 Zhang J Y, Liu G, Sun J. Materials China, 2016, 35(5), 374 (in Chinese).
张金钰, 刘刚, 孙军. 中国材料进展, 2016, 35(5), 374.
25 Jiang L, Bai Z T, Powers M, et al. Materials Science and Engineering A, 2022, 848, 143144.
26 Doan D Q. International Journal of Mechanical Sciences, 2022, 223, 107297.
27 Marimuthu K P, Han G, Lee H. Journal of Materials Research and Technology, 2022, 16, 216.
28 Cao Q P, Lv L B, Wang X D, et al. Materials Today Nano, 2021, 14, 100114.
29 Liu S Y, Cao Q P, Yu Q, et al. Journal of Non-Crystalline Solids, 2019, 510, 112.
30 Obeydavi A, Shafyei A, Rezaeian A, et al. Journal of Non-Crystalline Solids, 2020, 527, 119718.
31 Yao W, Cao Q P, Liu S Y, et al. Acta Materialia, 2020, 194, 13.
32 Zhong K, Zhang Z B, Zou Y, et al. Materias Reports, 2021, 35 (17), 17019 (in Chinese).
种凯, 张志彬, 邹勇, 等. 材料导报, 2021, 35(17), 17019.
33 Zhao B, Yang G H, Zeng F, et al. Acta Materialia, 2003, 51, 5093.
34 Luo P, Cao C R, Zhu F, et al. Nature Communications, 2018, 9, 1389.
35 Saitou M, Okudaira Y, Oshikawa W. Journal of the Electrochemical Society, 2003, 150(3), C140.
36 Lan S, Guo C Y, Zhou W Z, et al. Communications Physics, 2019, 2, 117.
37 Schuh C A, Detor A J. Acta Materialia, 2007, 55, 371.
38 Brink T, Peterlechner M, Rösner H, et al. Physical Review Applied, 2016, 5, 054005.
39 Liu L G, Dong C, Wu A M, et al. Surface Technology, 2020, 49 (5), 11 (in Chinese).
刘林根, 董闯, 吴爱民, 等. 表面技术, 2020, 49(5), 11.
40 Lee M L, Li Y, Schuh C A. Acta Materialia, 2004, 52, 4121.
41 Hofmann D C, Suh J Y, Wiest A, et al. Nature, 2008, 451, 1085.
42 Liu X F, Chen Y, Jiang M Q, et al. Materials Science and Engineering A, 2017, 680, 121.
43 Kuan S Y, Huang J C. Thin Solid Films, 2014, 561, 43.
44 Sun G Y, Chen G, Liu C T, et al. Scripta Materialia, 2006, 55, 375.
45 Wang C X, Wang T, Li B, et al. Materials Science and Engineering A, 2021, 799, 140146.
46 Gammer C, Rentenberger C, Beitelschmidt D, et al. Materials & Design, 2021, 209, 109970.
47 Khalajhedayati A, Rupert T J. Jom, 2015, 67(12), 2788.
48 Khalajhedayati A, Pan Z, Rupert T J. Nature Communications, 2016, 7, 10802.
49 Schuler J D, Rupert T J. Acta Materialia, 2017, 140, 196.
50 Schuler J D, Donaldson O K, Rupert T J. Scripta Materialia, 2018, 154, 49.
51 Wu G, Balachandran S, Gault B, et al. Advanced Materials, 2020, 32(34), 2002619.
52 Gan K F, Yan D S, Huang Y J. Computational Materials Science, 2022, 206, 111287.
53 Ming K S, Zhu Z W, Zhu W Q, et al. Science Advances, 2022, 8, 2884.
54 Katnagallu S, Wu G, Singh S P, et al. Small, 2020, 16, 2004400.
55 Zhang J Y, Liu G, Sun J. Scientific Reports, 2013, 3, 2324.
56 Kim J Y, Jang D, Greer J R. Advanced Functional Materials, 2011, 21(23), 4550.
57 Park S Y, Gwak E J, Huang M, et al. Scripta Materialia, 2017, 139, 63.
58 Wang Y M, Li J, Hamza A V, et al, et al. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27), 11155.
59 Zhang J Y, Liu G, Sun J. Acta Materialia, 2014, 66, 22.
60 Liu M C, Du X H, Lin I C, et al. Intermetallics, 2012, 30, 30.
61 Kim J Y, Gu X, Wraith M, et al. Advanced Functional Materials, 2012, 22(9), 1972.
62 Chang S Y, Chen B J, Hsiao Y T, et al. Materials Chemistry and Physics, 2018, 213, 277.
63 Sahu B P, Wu W Q, Wang J, et al. Physical Review Materials, 2022, 6, 094002.
64 Knorr I, Cordero N M, Lilleodden E T, et al. Acta Materialia, 2013, 61(13), 4984.
65 Wu G, Liu C, Brognara A, et al. Materials Today, 2021, 51, 6.
66 Rao S G, Shu R, Wang S Y, et al. Materials & Design, 2022, 224, 111388.
67 Cao Z H, Zhai G Y, Ma Y J, et al. International Journal of Plasticity, 2021, 145, 103081.
68 Wang Y M, Wang K, Pan D, et al. Scripta Materialia, 2003, 48(12), 1581.
69 Nieh T C, Barbee T W, Wadsworth J. Scripta Materialia, 1999, 41(9), 929.
70 Cheng B, Trelewicz J R. Acta Materialia, 2018, 153, 314.
71 Zhang J Y, Liu G, Lei S Y, et al. Acta Materialia, 2012, 60(20), 7183.
72 Liu M C, Huang J C, Chou H S, et al. Scripta Materialia, 2009, 61(8), 840.
73 Liu M C, Lee C J, Lai Y H, et al. Thin Solid Films, 2010, 518(24), 7295.
74 Wang Y Q, Kiener D, Liang X Q, et al. Journal of Alloys and Compounds, 2018, 768, 88.
75 Şopu D, Albe K, Eckert J. Acta Materialia, 2018, 159, 344.
76 Chen Z, Ma Z, Yu K Y, et al. Surface and Coatings Technology, 2018, 353, 247.
77 Sharma P, Yubuta K, Kimura H, et al. Physical Review B, 2009, 80, 024106.
78 Kuan S Y, Chou H S, Liu M C, et al. Intermetallics, 2010, 18(12), 2453.
79 Zhou X L, Chen C Q. International Journal of Plasticity, 2016, 80, 75.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[4] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[5] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[6] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[7] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[8] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[9] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[10] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[11] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[12] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[13] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[14] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed