Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22040272-6    https://doi.org/10.11896/cldb.22040272
  无机非金属及其复合材料 |
ZnIn2S4基光催化剂的制备及改性研究进展
李冠琼1,2, 梁海欧1,2, 李春萍1,2, 白杰1,2,*
1 内蒙古工业大学化工学院,呼和浩特 010051
2 内蒙古工业催化重点实验室,呼和浩特 010051
Research Progress on Preparation and Modification of ZnIn2S4-based Photocatalyst
LI Guanqiong1,2, LIANG Haiou1,2, LI Chunping1,2, BAI Jie1,2,*
1 Collage of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, China
下载:  全 文 ( PDF ) ( 9094KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,硫锌铟(ZnIn2S4)作为层状结构的三元金属硫化物,是一种典型的可见光响应光催化剂,由于其无毒,易于合成,具有可调的带隙、较好的物理化学稳定性以及优异的光催化活性等一系列优势,一度被应用于光催化的不同领域。本文着眼于ZnIn2S4的晶体结构和生长机理,综述了ZnIn2S4常用的制备工艺。此外,基于ZnIn2S4存在的弊端,总结了提高ZnIn2S4光催化性能的各种调控策略,包括形貌和结构工程、空位工程、掺杂工程以及半导体异质结的构建,并深入分析了不同调控方式对ZnIn2S4光催化性能增强的内在原因。最后,提出ZnIn2S4基光催化剂目前面临的挑战和未来的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李冠琼
梁海欧
李春萍
白杰
关键词:  ZnIn2S4  制备工艺  改性策略  光催化    
Abstract: In recent years, as the ternary metal sulfide with the layered structure, sulfur zinc indium (ZnIn2S4) is a typical visible light responsive photocatalyst. Due to a series of advantages such as non-toxic, easy synthesis, adjustable band gap, good physicochemical stability and good photocatalytic activity, it has been used in different fields of photocatalysis. This paper focuses on the crystal structure and growth mechanism of ZnIn2S4, and summarizes the common preparation processes of ZnIn2S4. In addition, based on the disadvantages of ZnIn2S4, various modification strategies to improve the photocatalytic performance of ZnIn2S4 are also summarized, including morphology and structure engineering, vacancy engineering, doping engineering and semiconductor heterojunction construction. And intrinsic reasons for the enhancement photocatalytic performance of ZnIn2S4 by different modification methods are analyzed deeply. Finally, present challenges and future application prospects of ZnIn2S4 based photocatalyst are proposed.
Key words:  ZnIn2S4    preparation methods    modification strategy    photocatalytic
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  O643  
基金资助: 国家自然科学基金(51772158)
通讯作者:  *白杰,内蒙古工业大学化工学院教授、博士研究生导师。2003年7月本科毕业于内蒙古师范大学化学系,2008年7月在吉林大学化学学院有机合成专业,获得博士学位。目前主要从事碳纤维基纳米复合催化剂的制备与催化性能研究;分子筛基复合催化剂的制备研究;一维功能纳米材料的制备与性能研究;可见光响应型纳米复合光催化材料的开发。先后公开发表研究论文40余篇,包括Journal of Catalysis、Inorganic Chemistry Frontiers、Organic Chemistry Frontiers、Chemical Engineering Journal等。baijie@imut.edu.cn   
作者简介:  李冠琼,2020年毕业于内蒙古工业大学,获得工学硕士学位。现为内蒙古工业大学化工学院在读博士研究生,在白杰教授的指导下进行研究。目前主要研究领域为光催化分解水制氢材料。
引用本文:    
李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
LI Guanqiong, LIANG Haiou, LI Chunping, BAI Jie. Research Progress on Preparation and Modification of ZnIn2S4-based Photocatalyst. Materials Reports, 2024, 38(3): 22040272-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040272  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22040272
1 Wang J J, Lin S, Tian N, et al. Advanced Functional Materials, 2021, 31, 2008008.
2 Gao H H, Mo Z L, Niu X H, et al. New Chemical Materials, 2017, 45(8), 41 (in Chinese).
高虎虎, 莫尊理, 牛小慧, 等. 化工新型材料, 2017, 45(8), 41.
3 Han X, Wang L L, Wang L, et al. Journal of the Chinese Ceramic Society, 2020, 48(7), 1097 (in Chinese).
韩煦, 王雷磊, 王磊, 等. 硅酸盐学报, 2020, 48(7), 1097.
4 Lei Z, You W, Liu M, et al. Chemical Communications, 2003, 3, 2142.
5 Li Y F, Zhou M H, Cheng B, et al. Journal of Materials Science & Technology, 2021, 56, 1.
6 Wang J, Sun S, Zhou R, et al. Journal of Materials Science & Technology, 2021, 78, 1.
7 Zhu Q H, Xing M Y, Zhang J L, Chemical Industry and Engineering Progress, 2021, 40(9), 4774 (in Chinese).
朱乔虹, 邢明阳, 张金龙, 化工进展, 2021, 40(9), 4774.
8 Wang C Z, Chen Z, Jin H B, et al. Journal of Materials Chemistry A, 2014, 2, 17820.
9 Yadav G, Ahmaruzzaman M, Inorg. Chemical Communications, 2022, 138, 109288.
10 Cheng X W, Cheng H, Zhang M Y, et al. New Chemical Materials, 2020, 48(1), 35 (in Chinese).
陈小卫, 陈虎, 张铭烨, 等. 化工新型材料, 2020, 48(1), 35.
11 Shen S H, Zhao L, Guo L J, et al. International Journal of Hydrogen Energy, 2008, 33, 4501.
12 Chen Y J, Hu S W, Liu W J, et al. Dalton Transactions, 2011, 40, 2607.
13 Gou X L, Cheng F Y, Shi Y H, et al. Journal of the American Chemical Society, 2006, 128, 7222.
14 Wang S B, Guan B Y, Lou X W D, Journal of the American Chemical Society, 2018, 140(15), 5037.
15 Wang S B, Guan B Y, Wang X, et al. Journal of the American Chemical Society, 2018, 140(45), 15145.
16 Cao X, Xu H, Chen S S, et al. Journal of Hubei Polytechnic University, 2018, 34(6), 20 (in Chinese).
曹鑫, 徐辉, 陈顺生, 等. 湖北理工学院学报, 2018, 34(6), 20.
17 Si M Y, Zhang J, He Y Y, et al. Green Chemistry, 2018, 20, 3414.
18 Zhou D X, Xue X D, Wang X, et al. Applied Catalysis B:Environmental, 2022, 310, 121337.
19 Hu X H, Yu J. C, Gong J M, et al. Crystal Growth & Design, 2007, 7, 2444.
20 Mora S, Paorici C, Romeo N, Journal of Applied Physics, 1971, 42, 2061.
21 Yang W J, Liu B D, Fang T, et al. Nanoscale, 2016, 8, 18197.
22 Li M T, Su J Z, Guo L J, et al. International Journal of Hydrogen Energy, 2008, 33, 2891.
23 Kempken B, Dzhagan V, Zahn D R T, et al. RSC Advances, 2015, 5, 89577.
24 Carevic M, Savic T, Abazovic A, et al. Materials Research Bulletin, 2017, 87, 140.
25 Liao C, Li J, Zhang Y, et al. Materials Letters, 2019, 248, 52.
26 Li X L, Wang X J, Zhao J, et al. Materials Reports A: Review Papers, 2018, 32(4), 1057 (in Chinese).
李旭力, 王晓静, 赵君, 等. 材料导报A:综述篇, 2018, 32(4), 1057.
27 Dan M, Cai Q, Xiang J L, et al. Progress in Chemistry, 2020, 32(7), 917 (in Chinese).
淡猛, 蔡晴, 向将来, 等. 化学进展, 2020, 32(7), 917.
28 Du C, Yan B, Lin Z Y, et al. Journal of Materials Chemistry A, 2020, 8, 207.
29 Du C, Zhang Q, Lin Z Y, et al. Applied Catalysis B:Environmental, 2019, 248, 193.
30 Xu B, He P L, Liu H L, et al. Angewandte Chemie International Edition, 2014, 53, 2339.
31 Liu Q, Zhou Y, Kou J H, et al. Journal of the American Chemical Society, 2010, 132(41), 14385.
32 Feng X J, Shankar K, Varghese O K, et al. Nano Letters, 2008, 8(11), 3781.
33 Kale B B, Baeg J O, Lee S M, et al. Advanced Functional Materials, 2006, 16(10), 1349.
34 Shi X W, Mao L, Yang P, et al. Applied Catalysis B:Environmental, 2020, 265, 118616.
35 Shen S, Zhao L, Guo L, Journal of Physics and Chemistry of Solids, 2008, 69(10), 2426.
36 Tu X L, Lu J, Li M, et al. Nanoscale, 2018, 10, 4735.
37 Ding S P, Liu X F, Shi Y Q, et al. ACS Applied Materials & Interfaces, 2018, 10, 17911.
38 Wang M, Xie Y H, You M Y, et al. Materials Reports, 2016, 30(28), 248 (in Chinese).
王敏, 谢元华, 由美雁等. 材料导报, 2016, 30(28), 248.
39 Gao B, Liu L F, Liu J D, et al. Applied Catalysis B:Environmental, 2013, 129, 89.
40 Xing F S, Liu Q W, Huang C J, Solar RRL, 2019, 38, 1900483.
41 Shi X W, Mao L, Dai C, et al. Journal of Materials Chemistry A, 2020, 8, 13376.
42 Wang P F, Shen Z R, Xia Y G, et al. Advanced Functional Materials, 2019, 29, 1807013.
43 Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293, 269.
44 Yang W L, Zhang L, Xie J F, et al. Angewandte Chemie International Edition, 2016, 55, 6716.
45 Wang X W, Chen J F, Li Q Y, et al. Chemistry-A European Journal, 2021, 27, 3786.
46 Liu L Z, Huang H W, Chen F, et al. Science Bulletin, 2020, 65, 934.
47 Zhang S Q, Liu X, Liu C B, et al. ACS Nano, 2018, 12, 751.
48 Chhowalla M, Shin H S, Eda G, et al. Nature Chemistry, 2013, 5, 263.
49 Wang Y, Chen D, Qin L, et al. Physical Chemistry Chemical Physics, 2019, 21, 25484.
50 He Y Q, Rao H, Song K, et al. Advanced Functional Materials, 2019, 29, 1905153.
51 Chen S S, Yu J G, Li S Z, et al. Journal of Functional Materials, 2017, 2(48), 2122 (in Chinese).
陈顺生, 余家国, 李少珍, 等. 功能材料, 2017, 2(48), 2122.
52 Liu D B, Su X D, Zhao H L, Materials Review, 2019, 33(34), 13 (in Chinese).
刘大波, 苏向东, 赵宏龙, 材料导报, 2019, 33(34), 13.
53 Guang Y, Chen D M, Ding H, et al. Applied Catalysis B:Environmental, 2017, 219, 611.
54 Zheng J F, Zhu S L, Nie L H, Materials Review, 2021, 35(Z1), 33 (in Chinese).
郑健飞, 朱思龙, 聂龙辉, 材料导报, 2021, 35(Z1), 33.
55 Gao Z Q, Chen K Y, Wang L, et al. Applied Catalysis B:Environmental, 2020, 268, 118462.
56 Chen W, Liu T Y, Huang T, et al. Nanoscale, 2016, 8(6), 3711.
57 Yang G, Ding H, Chen D M, et al. Applied Catalysis B:Environmental, 2018, 234, 260.
58 Zuo G, Wang Y, Teo W L, et al. Angewandte Chemie International Edition, 2020, 59(28), 11287.
59 Wang X C, Maeda K, Thomas A, et al. Nature Materials, 2009, 8, 76.
60 Chen K H, Wang X W, Li Q Y, et al. Chemical Engineering Journal, 2021, 418, 129476.
61 Li X L, Wang X J, Zhu J Y, et al. Chemical Engineering Journal, 2018, 353, 15.
62 Dai D S, Wang L, Xiao N, et al. Applied Catalysis B:Environmental, 2018, 233, 194.
63 Wang Y M, Zhang T T, Wei T T, et al. New Journal of Chemistry, 2021, 45, 11261.
64 Shen R C, Xie J, Lu X Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 6, 4026.
65 Li C Q, Du X, Jiang S, et al. Advanced Science, 2022, 9, 2201773.
66 Guan S D, Fu X L, Zhang Y, et al. Chemical Science, 2018, 9, 1574.
67 Huang L S, Zhang L X, Bao D Y, et al. Applied Surface Science, 2020, 526, 146742.
68 Zhang S J, Duan S X, Chen G L, et al. Chinese Journal of Catalysis, 2021, 42, 193.
69 Yang Y, Zheng X Z, Liu J F, et al. Inorganic Chemistry Frontiers, 2022, 9, 1943.
70 Wu S M, Pang H, Zhou W, et al. Nanoscale, 2020, 16, 8693.
[1] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[2] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[3] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[4] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[5] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[6] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[7] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[8] 黄玺, 张亮, 王曦, 陈晨, 卢晓. 电子封装用纳米级无铅钎料的研究进展[J]. 材料导报, 2024, 38(23): 23080181-13.
[9] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[10] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[11] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[12] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[13] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[14] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[15] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed