Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22040338-6    https://doi.org/10.11896/cldb.22040338
  金属与金属基复合材料 |
基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化
楚佳杰1, 韩冰源1,2,*, 李仁兴1, 高祥涵1, 丛孟启1, 吴海东1, 徐文文1, 杜伟1
1 江苏理工学院汽车与交通工程学院,江苏 常州 213001
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Quality Optimization of Plasma Sprayed Ni60CuMo Coating Based on Response Surface Method
CHU Jiajie1, HAN Bingyuan1,2,*, LI Renxing1, GAO Xianghan1, CONG Mengqi1, WU Haidong1, XU Wenwen1, DU Wei1
1 School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China
2 National Key Lab for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 11013KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用表面工程技术对废旧铝合金活塞进行再制造,可有效延长铝合金活塞服役寿命,同时实现资源的节约与环境污染的降低。为此采用等离子喷涂技术在铝合金109 (ZL109)表面制备了Ni60CuMo防护涂层,结合Box-Behnken响应曲面法设计实验对涂层质量进行优化,以孔隙率为响应值,分析了喷涂距离(D)、送粉速率(R)和喷涂功率(P1)对涂层孔隙率(P)的影响规律。结果表明:送粉速率对孔隙率的影响最大,在较低的送粉速率、较大的喷涂距离与较小的喷涂功率下涂层孔隙、裂纹更少,涂层质量更优。同时建立的孔隙率响应曲面模型有效,可以用于等离子喷涂Ni60CuMo涂层的质量优化。最低孔隙率的预测参数:喷涂距离D=131.58 mm,送粉速率R=37.01 g·min-1和喷涂功率P1=31.09 kW,能获得的最小孔隙率为2.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
楚佳杰
韩冰源
李仁兴
高祥涵
丛孟启
吴海东
徐文文
杜伟
关键词:  等离子喷涂  镍基涂层  孔隙率  响应曲面法    
Abstract: The use of surface engineering technology to remanufacture the waste aluminum alloy piston can effectively prolong the service life of the aluminum alloy piston, and at the same time realize the saving of resources and the reduction of environmental pollution. For this purpose, the Ni60CuMo coating was prepared on the surface of aluminum alloy 109 (ZL109) by plasma spraying technology, and a Box-Behnken design regression analysis experiments combined with response surface method. Taking the porosity of the coating under different process conditions as the response value, the effects of the three factors of spraying distance (D), powder feeding rate (R) and spraying power (P1) on the coating porosity (P) was analyzed. The results show that the powder feeding rate has the greatest influence on the porosity, and the coating quality is better with fewer pores and cracks at lower powder feeding rate, larger spraying distance and smaller spraying power. And the established porosity response surface model is effective and can be used for quality optimization of plasma sprayed Ni60CuMo coatings. The prediction parameters of the minimum porosity are:spraying distance D=131.58 mm, powder feeding rate R=37.01 g·min-1 and spraying power P1=31.09 kW, the minimum porosity that can be obtained 2.5%.
Key words:  plasma spray    nickel-based coating    porosity    response surface method
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TG17  
基金资助: 江苏省自然科学基金(BK20191036); 基础研究项目(JCKY61420051911)
通讯作者:  *韩冰源,江苏理工学院汽车与交通工程学院教授、硕士研究生导师。2013年获东北林业大学载运工具运用工程专业工学博士学位。近5年,主持参与“十三五”预研基金、江苏省自然科学基金、江苏省高校自然科学研究项目、江苏省工程技术研究中心建设项目、江苏省产学研联合创新资金-前瞻性联合研究项目、常州市公共技术服务平台项目等科研项目10余项;发表相关论文30余篇,其中SCI收录9篇,EI收录20余篇;授权发明专利10余项;作为副主编及参编教材7部。主要从事报废汽车绿色拆解与零部件再制造的研究工作。hanbingyuan@jsut.edu.cn   
作者简介:  楚佳杰,2020年6月于江苏理工学院获得工学学士学位。现为江苏理工学院汽车与交通工程学院硕士研究生,在韩冰源教授的指导下进行研究,目前主要研究领域为汽车零部件再制造。
引用本文:    
楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
CHU Jiajie, HAN Bingyuan, LI Renxing, GAO Xianghan, CONG Mengqi, WU Haidong, XU Wenwen, DU Wei. Quality Optimization of Plasma Sprayed Ni60CuMo Coating Based on Response Surface Method. Materials Reports, 2024, 38(3): 22040338-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040338  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22040338
1 Ma G Z, Chen S Y, Wang H D. Micro process and quality control of plasma spraying, Springer Press, 2022, pp. 5.
2 Zhang Z R, Wang L R, Liu D J, et al. Corrosion and Protection, 2020, 41(2), 33(in Chinese).
张珠让, 王乐让, 刘达娇, 等. 腐蚀与防护, 2020, 41(2), 33.
3 Liu K, Li Y, Wang J. Materials and Design, 2016, 105, 171.
4 Osama A, Lou L Y, Muhammad Y, et al. Coatings, 2020, 10(7), 13.
5 Chen H, Chen K H, XU Y C, et al. Journal of Central South University, 2018, 25, 506.
6 Liu M, Chen S Y, Ma G Z, et al. Chinese Journal of Mechanical Engineering, 2020, 56(10), 64(in Chinese).
刘明, 陈书赢, 马国政, 等. 机械工程学报, 2020, 56(10), 64.
7 Han B Y, Du W, Zhu S, et al. Surface Technology, 2021, 50(4), 159 (in Chinese).
韩冰源, 杜伟, 朱胜, 等. 表面技术, 2021, 50(4), 159.
8 Zhang L, Liao X J, Zhang S L, et al. Journal of Thermal Spray Techno-logy, 2021, 30(1), 181.
9 Wang X, Xing Z, Liu Y, et al. Chinese Journal of Physics, 2019, 61, 72.
10 Hu S, Wen Y H, Lyu X P, et al. Thermal Spray Technology, 2021, 13(3), 72 (in Chinese).
胡帅, 温永红, 吕喜鹏, 等. 热喷涂技术, 2021, 13(3), 72.
11 Chen S Y, Ma G Z, Wang H D, et al. Surface & Coatings Technology, 2018, 344, 43.
12 Wang H D, Chen S Y, Ma G Z, et al. Chinese Journal of Mechanical Engineering, 2017, 53(24), 18.
王海斗, 陈书赢, 马国政, 等. 机械工程学报, 2017, 53(24), 18.
13 Tillmann W, Khalil O, Baumann I. Journal of Thermal Spray Technology, 2021, 30(4), 1015.
14 Elfghi F M. Chemical Engineering Research and Design, 2016, 113, 264.
15 Salavati S, Coyle T W, Mostaghimi J. Surface & Coatings Technology, 2016, 286, 16.
16 Liu M, Zhang W, Wang H D, et al. China Surface Engineering, 2018, 31(5), 142(in Chinese).
刘明, 张伟, 王海斗, 等. 中国表面工程, 2018, 31(5), 142.
17 Kazasidis, Marios, Verna, et al. Emergent Materials, 2021(prepublish), 145-153.
18 Liang C G, Li X M. Materials Science and Technology, 2018, 26(2), 90 (in Chinese).
梁存光, 李新梅. 材料科学与工艺, 2018, 26(2), 90.
19 Jin Z A, Liu M, Zhu L N, et al. China Surface Engineering, 2020, 33(3), 111(in Chinese).
靳子昂, 刘明, 朱丽娜, 等. 中国表面工程, 2020, 33(3), 111.
20 Ramachandran C S, Balasubramanian V, Ananthapadmanabhan P V. Journal of Thermal Spray Technology, 2011, 20(3), 590.
21 Ming L, Zhang J, Guo Z M, et al. Journal of Physics:Conference Series, 2019, 1176(5), 13.
22 Liu Z Q. Removal process and recoating performance of plasma sprayed NiAl and NiCrAl coatings. Master's Thesis, Harbin Institute of Technology, China,2018(in Chinese).
刘志强. 等离子喷涂NiAl、NiCrAl涂层去除工艺及再涂覆性能. 硕士学位论文, 哈尔滨工业大学, 2018.
23 Odhiambo J G, Li W G, Zhao Y T, et al. Coatings, 2019, 9(7), 460.
24 Szala M, Ŀatka L, Awtoniuk M, et al. Processes, 2020, 8(12), 1544.
25 Beg S, Akhter S. Box-Behnken Designs and Their Applications in Pharmaceutical Product Development, Springer Press, 2021, pp. 77.
26 Fu Q Q, Tong Y P. Powder Metallurgy Technology, 2020, 38(5), 332(in Chinese).
付倩倩, 通雁鹏. 粉末冶金技术, 2020, 38(5), 332.
27 Li Z M, Qin S, Yang J L, et al. Metal Materials and Metallurgical Engineering, 2021, 49(1), 12(in Chinese).
李志民, 秦松, 杨佳霖, 等. 金属材料与冶金工程, 2021, 49(1), 12.
28 Han B Y, Xu W W, Zhu S, et al. Materials Reports, 2021, 35(21), 21105.
韩冰源, 徐文文, 朱胜, 等. 材料导报, 2021, 35(21), 21105.
29 Mao J, Deng C G, Yang K, et al. Mechanical Engineering Materials, 2014, 38(6), 100(in Chinese).
毛杰, 邓畅光, 杨焜, 等. 机械工程材料, 2014, 38(6), 100.
30 Thirumalaikumarasamy D, Shanmugam K, Balasubramanian V. Progress in Natural Science:Materials International, 2012, 22(5), 468.
[1] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[2] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[3] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[4] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[5] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[6] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[7] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[8] 王哲昊, 吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望[J]. 材料导报, 2024, 38(11): 23110033-10.
[9] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[10] 彭启清, 刘明, 黄艳斐, 马国政, 郭伟玲, 王海斗. 热喷涂陶瓷-树脂复合涂层的研究现状[J]. 材料导报, 2023, 37(9): 21100184-12.
[11] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[12] 周梅, 白金婷, 郭凌志, 张玉琢. 基于响应曲面法的煤矸石地聚物注浆材料配比优化[J]. 材料导报, 2023, 37(20): 22020068-9.
[13] 王浩臻, 周新远, 刘明, 贾磊, 黄艳斐, 王海斗. 封孔剂降低热喷涂涂层孔隙率的研究进展[J]. 材料导报, 2023, 37(20): 22030068-19.
[14] 黄清华, 陈爽, 刘明, 周新远, 黄艳斐, 王海斗. 反应等离子喷涂技术研究现状[J]. 材料导报, 2023, 37(20): 22030146-12.
[15] 张华, 李梦冉, 徐澎鹏, 李晶晶, 张学斌, 刘伟, 汪金芝, 苏海林. 二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响[J]. 材料导报, 2023, 37(18): 22020065-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed