Quality Optimization of Plasma Sprayed Ni60CuMo Coating Based on Response Surface Method
CHU Jiajie1, HAN Bingyuan1,2,*, LI Renxing1, GAO Xianghan1, CONG Mengqi1, WU Haidong1, XU Wenwen1, DU Wei1
1 School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China 2 National Key Lab for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China
Abstract: The use of surface engineering technology to remanufacture the waste aluminum alloy piston can effectively prolong the service life of the aluminum alloy piston, and at the same time realize the saving of resources and the reduction of environmental pollution. For this purpose, the Ni60CuMo coating was prepared on the surface of aluminum alloy 109 (ZL109) by plasma spraying technology, and a Box-Behnken design regression analysis experiments combined with response surface method. Taking the porosity of the coating under different process conditions as the response value, the effects of the three factors of spraying distance (D), powder feeding rate (R) and spraying power (P1) on the coating porosity (P) was analyzed. The results show that the powder feeding rate has the greatest influence on the porosity, and the coating quality is better with fewer pores and cracks at lower powder feeding rate, larger spraying distance and smaller spraying power. And the established porosity response surface model is effective and can be used for quality optimization of plasma sprayed Ni60CuMo coatings. The prediction parameters of the minimum porosity are:spraying distance D=131.58 mm, powder feeding rate R=37.01 g·min-1 and spraying power P1=31.09 kW, the minimum porosity that can be obtained 2.5%.
1 Ma G Z, Chen S Y, Wang H D. Micro process and quality control of plasma spraying, Springer Press, 2022, pp. 5. 2 Zhang Z R, Wang L R, Liu D J, et al. Corrosion and Protection, 2020, 41(2), 33(in Chinese). 张珠让, 王乐让, 刘达娇, 等. 腐蚀与防护, 2020, 41(2), 33. 3 Liu K, Li Y, Wang J. Materials and Design, 2016, 105, 171. 4 Osama A, Lou L Y, Muhammad Y, et al. Coatings, 2020, 10(7), 13. 5 Chen H, Chen K H, XU Y C, et al. Journal of Central South University, 2018, 25, 506. 6 Liu M, Chen S Y, Ma G Z, et al. Chinese Journal of Mechanical Engineering, 2020, 56(10), 64(in Chinese). 刘明, 陈书赢, 马国政, 等. 机械工程学报, 2020, 56(10), 64. 7 Han B Y, Du W, Zhu S, et al. Surface Technology, 2021, 50(4), 159 (in Chinese). 韩冰源, 杜伟, 朱胜, 等. 表面技术, 2021, 50(4), 159. 8 Zhang L, Liao X J, Zhang S L, et al. Journal of Thermal Spray Techno-logy, 2021, 30(1), 181. 9 Wang X, Xing Z, Liu Y, et al. Chinese Journal of Physics, 2019, 61, 72. 10 Hu S, Wen Y H, Lyu X P, et al. Thermal Spray Technology, 2021, 13(3), 72 (in Chinese). 胡帅, 温永红, 吕喜鹏, 等. 热喷涂技术, 2021, 13(3), 72. 11 Chen S Y, Ma G Z, Wang H D, et al. Surface & Coatings Technology, 2018, 344, 43. 12 Wang H D, Chen S Y, Ma G Z, et al. Chinese Journal of Mechanical Engineering, 2017, 53(24), 18. 王海斗, 陈书赢, 马国政, 等. 机械工程学报, 2017, 53(24), 18. 13 Tillmann W, Khalil O, Baumann I. Journal of Thermal Spray Technology, 2021, 30(4), 1015. 14 Elfghi F M. Chemical Engineering Research and Design, 2016, 113, 264. 15 Salavati S, Coyle T W, Mostaghimi J. Surface & Coatings Technology, 2016, 286, 16. 16 Liu M, Zhang W, Wang H D, et al. China Surface Engineering, 2018, 31(5), 142(in Chinese). 刘明, 张伟, 王海斗, 等. 中国表面工程, 2018, 31(5), 142. 17 Kazasidis, Marios, Verna, et al. Emergent Materials, 2021(prepublish), 145-153. 18 Liang C G, Li X M. Materials Science and Technology, 2018, 26(2), 90 (in Chinese). 梁存光, 李新梅. 材料科学与工艺, 2018, 26(2), 90. 19 Jin Z A, Liu M, Zhu L N, et al. China Surface Engineering, 2020, 33(3), 111(in Chinese). 靳子昂, 刘明, 朱丽娜, 等. 中国表面工程, 2020, 33(3), 111. 20 Ramachandran C S, Balasubramanian V, Ananthapadmanabhan P V. Journal of Thermal Spray Technology, 2011, 20(3), 590. 21 Ming L, Zhang J, Guo Z M, et al. Journal of Physics:Conference Series, 2019, 1176(5), 13. 22 Liu Z Q. Removal process and recoating performance of plasma sprayed NiAl and NiCrAl coatings. Master's Thesis, Harbin Institute of Technology, China,2018(in Chinese). 刘志强. 等离子喷涂NiAl、NiCrAl涂层去除工艺及再涂覆性能. 硕士学位论文, 哈尔滨工业大学, 2018. 23 Odhiambo J G, Li W G, Zhao Y T, et al. Coatings, 2019, 9(7), 460. 24 Szala M, Ŀatka L, Awtoniuk M, et al. Processes, 2020, 8(12), 1544. 25 Beg S, Akhter S. Box-Behnken Designs and Their Applications in Pharmaceutical Product Development, Springer Press, 2021, pp. 77. 26 Fu Q Q, Tong Y P. Powder Metallurgy Technology, 2020, 38(5), 332(in Chinese). 付倩倩, 通雁鹏. 粉末冶金技术, 2020, 38(5), 332. 27 Li Z M, Qin S, Yang J L, et al. Metal Materials and Metallurgical Engineering, 2021, 49(1), 12(in Chinese). 李志民, 秦松, 杨佳霖, 等. 金属材料与冶金工程, 2021, 49(1), 12. 28 Han B Y, Xu W W, Zhu S, et al. Materials Reports, 2021, 35(21), 21105. 韩冰源, 徐文文, 朱胜, 等. 材料导报, 2021, 35(21), 21105. 29 Mao J, Deng C G, Yang K, et al. Mechanical Engineering Materials, 2014, 38(6), 100(in Chinese). 毛杰, 邓畅光, 杨焜, 等. 机械工程材料, 2014, 38(6), 100. 30 Thirumalaikumarasamy D, Shanmugam K, Balasubramanian V. Progress in Natural Science:Materials International, 2012, 22(5), 468.