Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 161-163    
  无机非金属及其复合材料 |
碳纤维复合材料滑动舱门刚度试验与仿真分析
孙阔
中国直升机设计研究所,景德镇 333001
Test and Simulation Analysis on Stiffness of Carbon Fiber Composite Sliding Door
SUN Kuo
China Helicopter Research and Development Institute, Jingdezhen 333001, China
下载:  全 文 ( PDF ) ( 3872KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过有限元仿真和试验的方法研究了碳纤维复合材料滑动舱门的刚度,对滑动舱门在气动载荷作用下的计算与测量变形值进行了对比分析。结果表明:试验及仿真两种方法测得的复合材料舱门的变形量随着载荷的增加都呈线性变化趋势,两种方法得到的位移值很相近,位移实测最大、最小值分别为13.98 mm、2.26 mm,误差为14.2%,理论计算值分别为12 mm、2.19 mm,误差为3.1%。验证了仿真分析方法及试验方法的合理性。不同位置内外面板高度的不同对舱门的刚度有显著影响,其原因是高度的差异影响了舱门抗弯承载能力,而舱门主要受面外载荷,因此舱门刚度取决于其抗弯承载能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙阔
关键词:  复合材料  滑动舱门  刚度  试验与仿真    
Abstract: In this paper, the stiffness of carbon fiber composite sliding door was studied by means of finite element simulation and test. The calculated and measured deformations of sliding door under aerodynamic loads were compared and analyzed. The results showed that the deformation of the composite door under the two methods of test and simulation showed a linear trend with the increase of load. The displacement values obtained by the two methods were very similar. For example, the maximum and minimum displacement actual measured value were 13.98 mm and 2.26 mm, with an error of 14.2%, and the theoretical calculation values were 12 mm and 2.19 mm, with an error of 3.1%. The rationality of simulation analysis method and test method was verified. The stiffness of the door was significantly affected by the height of the inner and outer panels at different locations. The reason is that the height of the door affects the flexural capacity of the door, and the door is mainly subjected to the out-of-plane load. Therefore, the stiffness of the door depends on its flexural capacity.
Key words:  composite    sliding door    stiffness    test and simulation
                    发布日期:  2020-07-01
ZTFLH:  V258  
基金资助: 国家863计划(2012AA112201)
作者简介:  孙阔,2016年4月毕业于哈尔滨工程大学,获得硕士学位,同年加入中国直升机设计研究所强度室工作至今,主要从事直升机结构静力学研究。
引用本文:    
孙阔. 碳纤维复合材料滑动舱门刚度试验与仿真分析[J]. 材料导报, 2020, 34(Z1): 161-163.
SUN Kuo. Test and Simulation Analysis on Stiffness of Carbon Fiber Composite Sliding Door. Materials Reports, 2020, 34(Z1): 161-163.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/161
1 邢丽英,蒋诗才,周正刚.复合材料学报,2013(2),1.
2 Tang Jianmao, Stephen K L Lee. Spacecraft Environment Engineering,2010,5,552.
3 朱晋生,王卓,欧峰.新技术新工艺,2012(10),76.
4 杜善义.复合材料学报,2007(1),1.
5 Meidell A. Composites,2009,4,284.
6 王秋宇,陈普会.航空工程进展,2014(3),369.
7 李宇峰,贺高.航空工程进展,2016(2),230.
8 冯蕴雯,姚雄华,薛小锋,等.西北工业大学学报,2013(5),803.
[1] 杨松, 盛双华, 刘应开. 基于Au修饰的花状V2O5的表面增强拉曼散射研究[J]. 材料导报, 2020, 34(Z1): 34-38.
[2] 刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
[3] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[4] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[5] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[6] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[7] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[8] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[9] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[10] 曹飞, 陈杰, 林泽力. 基于小波能量谱和信息熵的复合材料结构损伤诊断[J]. 材料导报, 2020, 34(Z1): 476-479.
[11] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[12] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[13] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[14] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[15] 朱洪艳, 吴宝昌, 林长亮, 王金亮, 王刚. 直升机复合材料结构基于振动健康监测的研究进展[J]. 材料导报, 2020, 34(Z1): 581-584.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed