Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 327-332    https://doi.org/10.11896/j.issn.1005-023X.2018.02.033
  物理   计算模拟 |材料 |
聚合物注塑成型充模阶段流动取向分子机理研究
喻选,辛勇
南昌大学机电工程学院,南昌 330031
Exploration on Orientation Mechanism of Polymer During Flow Stage in Injection Molding
Xuan YU,Yong XIN
College of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 3040KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

以聚碳酸酯(PC)为研究材料,基于分子动力学方法,对三维周期性边界条件下PC流动取向过程中分子链团迁移性能和形态演化进行了研究,与实验结果对比得到充模流动阶段聚合物分子链团的流动取向机制。分子链团均方位移表明流动取向过程实质上是分子链团的空间构象协调变形的结果,虽然随着剪切速率的增大,分子链团均方位移迅速增大、非键合能急剧减小,但分子链基本分子结构却仍然保持不变。同时,在取向过程中无规缠绕的分子链团一方面由于剪切拉伸作用沿流动方向排布,另一方面分子链团之间因发生解缠结而趋于相互分散。注塑实验结果表明,制品双折射率随注射速率的增加而增大,并沿流动方向递减,且取向方向上的拉伸性能随取向度的增加也有所提高,这与模拟结果中聚合物分子链取向机理一致。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
喻选
辛勇
关键词:  注塑成型  聚碳酸酯  分子链  取向  分子动力学    
Abstract: 

Taking the polycarbonate (PC) as research objective, the migration properties and morphological evolution of polymer chains under three dimensional periodic boundary condition were studied based on molecular dynamics (MD) simulation. And the flow induced orientation mechanism of polymer was revealed by comparing simulated and experimental results. The mean square displacement indicated that the orientation process was actually an coordinated conformation of polymer conglomeration, although the mean square displacement increased largely and the non-bond energy decreased rapidly while the shear rate increasing, the structure of polymer chains did not changed at all. At the same time, the randomly entangled polymer chains not only arranged along flow direction, but also separated from each other and tended to be dispersive distribution. The experimental results showed that birefringence increased with the increase of the injection rate and decreased along the flow direction, while the tensile properties in the orientation direction also increased with the increase of the degree of orientation, which is well consistent with the migration behavior and morphology evolution rules indicated by the simulation results.

Key words:  injection molding    polycarbonate    molecular chain    orientation    molecular dynamics (MD)
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TQ320  
基金资助: 国家自然科学基金(51365038;51565034);江西省自然科学基金(20161BAB206123);江西省研究生创新专项资金(YC2016-S043)
引用本文:    
喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
Xuan YU,Yong XIN. Exploration on Orientation Mechanism of Polymer During Flow Stage in Injection Molding. Materials Reports, 2018, 32(2): 327-332.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.033  或          https://www.mater-rep.com/CN/Y2018/V32/I2/327
图1  PC(a)单体和(b)分子链团模型
System No. 1 2 3 4 5 6
Shear rate/ps-1 0.01 0.08 0.1 0.25 0.5 1.0
表1  各PC模型剪切速率
图2  PC分子链团的(a)MSD与(b)最大MSD值随剪切速率的变化曲线
图3  PC分子链团(a)自扩散系数与(b)黏度随剪切速率变化曲线
图4  剪切流动时PC分子链团(a)键长与(b)二面角变化曲线
图5  PC分子链团在剪切场中(a)键合能与(b)非键合能变化曲线
图6  不同剪切速率下PC分子链团回转半径分布曲线
图7  注塑试样尺寸(mm)
图8  (a)双折射及(b)拉伸力学性能随注射速率变化曲线
1 Tadmor Z . Molecular orientation in injection molding[J]. Journal of Applied Polymer Science, 1974,18(6):1753.
2 Patcharaphun S, Mennig G . Simulation and experimental investigations of material distribution in the sandwich injection molding process[J]. Polymer-Plastics Technology and Engineering, 2006,45(6):759.
3 Krueger W L, Tadmor Z . Injection molding into a rectangular cavity with inserts[J]. Polymer Engineering & Science, 1980,20(6):426.
4 Jie Z, Hong L, Lei Z , et al. The effects of vibration field on crystal structures and orientation of isotactic polypropylene injection samples[J]. Polymer Bulletin, 2012,68(1):239.
5 Isayev A I . Orientation development in the injection molding of amorphous polymers[J]. Polymer Engineering & Science, 2004,23(23):271.
6 Abbasi S, Carreau P J, Derdouri A . Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties[J]. Polymer, 2010,51(4):922.
7 Arjmand M, Mahmoodi M, Gelves G A , et al. Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate[J]. Carbon, 2011,49(11):3430.
8 Ozcelik B, Ozbay A, Demirbas E . Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding[J]. International Communications in Heat and Mass Transfer, 2010,37(9):1359.
9 Sadabadi H, Ghasemi M . Effects of some injection molding process parameters on fiber orientation tensor of short glass fiber polystyrene composites (SGF/PS)[J]. Journal of Reinforced Plastics & Compo-sites, 2007,26(17):1729.
10 Tiusanen J, Vlasveld D, Vuorinen J . Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts[J]. Composites Science and Technology, 2012,72(14):1741.
11 Min I, Yoon K . An experimental study on the effects of injection-molding types for the birefringence distribution in polycarbonate discs[J]. Korea-Australia Rheology Journal, 2011,23(3):155.
12 Isayev A I, Lin T H . Frozen-in birefringence and anisotropic shrin-kage in optical moldings: I. Theory and simulation scheme[J]. Polymer, 2010,51(1):316.
13 Katletz S, Pfleger M, Pühringer H , et al. Polarization sensitive terahertz imaging: Detection of birefringence and optical axis[J]. Optics Express, 2012,20(21):23025.
14 Barrat J L, Baschnagel J, Lyulin A . Molecular dynamics simulations of glassy polymers[J]. Soft Matter, 2010,6(15):3430.
15 Mahajan D K, Hartmaier A . Mechanisms of crazing in glassy polymers revealed by molecular dynamics simulations[J]. Physical Review E, 2012,86(1):1818.
16 Venkatesan S, Basu S . Investigations into crazing in glassy amorphous polymers through molecular dynamics simulations[J]. Journal of the Mechanics and Physics of Solids, 2015,77:123.
17 Sommer J U, Luo C . Molecular dynamics simulations of semicrystalline polymers: Crystallization, melting, and reorganization[J]. Journal of Polymer Science Part B Polymer Physics, 2010,48(21):2222.
18 Wang L Z, Duan L L . Isothermal crystallization of a single polyethylene chain induced by graphene: A molecular dynamics simulation[J]. Computational & Theoretical Chemistry, 2012,1002(48):59.
19 Pandiyan S, Rousseau B . Factors influencing properties of interfacial regions in semicrystalline polyethylene: A molecular dynamics simulation study[J]. Polymer, 2013,54(14):3586.
20 Peng Y, Locker C R, Rutledge G C . Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene[J]. Macromolecules, 2013,46(11):4723.
21 Yamamoto T . Molecular dynamics simulations of steady-state crystal growth and homogeneous nucleation in polyethylene-like polymer[J]. Journal of Chemical Physics, 2008,129(18):2732.
22 Hossain D, Tschopp M A, Ward D K , et al. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene[J]. Polymer, 2010,51(25):6071.
23 Sahputra I H, Echtermeyer A T . Molecular dynamics simulations of strain-controlled fatigue behaviour of amorphous polyethylene[J]. Journal of Polymer Research, 2014,21(11):1.
24 4 Bunte S W, Sun H . Molecular modeling of energetic materials: The parameterization and validation of nitrate esters in the COMPASS force field[J]. The Journal of Physical Chemistry B, 2000,104(11):2477.
25 5 Jie Y, Ren Y, Tian A , et al. COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in liquid phases[J]. Journal of Physical Che-mistry B, 2000,104(20):4951.
26 6 Andersen, H C . Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of Chemical Physics, 1980,72(4), 2384.
27 27 Berendsen H J C, Postma J P M, Gunsteren W F V , et al. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics, 1984,81(8):3684.
28 28 De Gennes P G. Scaling concepts in polymer physics[M].Cornell University Press, 1979.
29 9 Davies M, Clemett C . Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrix[J]. The Journal of Chemical Physics, 2010,132(19):96.
30 0 Grosse A V . Viscosity and self-diffusion of liquid metals[J]. Science, 1964,145(3627):50.
31 Isayev A I . Orientation development in the injection molding of amorphous polymers[J]. Polymer Engineering & Science, 1983,23(5):271.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[4] 杨劼, 任慧平, 王海燕, 高雪云, 刘宗昌. 低碳贝氏体钢等温淬火变体选择与特殊晶面定量化表征[J]. 材料导报, 2024, 38(9): 22100050-8.
[5] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[6] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[7] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[8] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[9] 王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
[10] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[11] 张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
[12] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[13] 崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
[14] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[15] 朱雅婧, 徐光霁, 马涛, 范剑伟, 胡靖. 基于有限元和分子模拟的热再生沥青激活行为研究[J]. 材料导报, 2024, 38(13): 22040306-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed