Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 156-162    https://doi.org/10.11896/j.issn.1005-023X.2017.023.023
  第一届先进胶凝材料研究与应用学术会议 |
复合无机水合盐对磷酸镁水泥水化及性能的影响*
赵思勰1, 晏华1, 汪宏涛1, 李云涛1, 戴丰乐1, 薛明2, 胡志德1
1 后勤工程学院化学与材料工程系,重庆 401311;
2 后勤工程学院建筑与环境工程系,重庆 401311
Effect of Composite Hydrated Salt on Hydration and Properties of Magnesium Phosphate Cement
ZHAO Sixie1, YAN Hua1, WANG Hongtao1, LI Yuntao1, DAI Fengle1, XUE Ming2, HU Zhide1
1 Department of Chemical and Material Engineering, Logistical Engineering University, Chongqing 401311;
2 Department of Architecture and Environment Engineering, Logistical Engineering University, Chongqing 401311
下载:  全 文 ( PDF ) ( 7158KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将三种无机水合盐Na2B4O7·10H2O、Na2SO4·10H2O和Ca(NO3)2·4H2O按照最优比例(质量比为1.5∶7∶1.5)复掺得到复合无机水合盐FH,比较了单掺硼砂的磷酸钾镁水泥(MKPC)NB10与不同FH掺量下MKPC(FH-MKPC)的工作性能、绝热温升及抗压强度。利用XRD、TG-DSC及SEM等微观分析手段,结合水化放热速率曲线研究了FH对MKPC早期水化历程的影响。结果表明:FH延缓了MKPC的水化,使得水化温升曲线出现诱导期和两个温度峰,水化放热速率和水化温峰值降低。FH的掺入(>8%)大幅延长了MKPC的凝结时间,增强了MKPC的施工可操作性。FH掺量越多,MKPC凝结时间不断延长,流动度提高,早期强度降低。FH掺量为8%的FH-MKPC初凝时间达到25.20 min,较NB10延长了90.76%,同时水化产物的早期生成量和热稳定性更高, 7 h、1 d和3 d抗压强度略高于NB10。为保证MKPC符合施工需要又满足强度要求,FH的最佳掺量为8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵思勰
晏华
汪宏涛
李云涛
戴丰乐
薛明
胡志德
关键词:  复合无机水合盐  磷酸钾镁水泥(MKPC)  水化温升  凝结时间  水化产物  最佳掺量    
Abstract: According to optimal proportion(1.5∶7∶1.5, mass ratio), composite hydrated salt(FH) was prepared by blending three categories of hydrated salt Na2B4O7·10H2O, Na2SO4·10H2O and Ca(NO3)2·4H2O. Work performance, hydration temperature and compressive strength of magnesium potassium phosphate cement(MKPC) mixed with borax NB10 and mixed with different content of FH(FH-MKPC) were compared. Combining hydration heat evolution curve, influence of FH on early hydration of MKPC was investigated by XRD, TG-DSC and SEM microcosmic analysis methods. The result showed FH slowed down the hydration of MKPC, which made hydration temperature rise curve have induction and two temperature peak, and diminished hydration heat evolution rate and hydration temperature peak value. The addition of FH(>8%) prolonged setting time of MKPC largely, enhancing construction operability. With the content of FH increase, setting time of MKPC prolonged, fluidity increased and early compressive strength decreased. Initial setting time of FH-MKPC mixed with 8% FH could reach 25.20 min, prolonged 90.76%, compared with NB10. At the same time, amount and thermal stability of hydration products of early hydration stage of FH-MKPC was higher, 7 h, 1 d and 3 d compressive strength were also slightly higher than former. In order to meet the requirement of construction and strength, optimal content of FH was 8%.
Key words:  composite hydrated salt    magnesium potassium phosphate cement (MKPC)    hydration temperature    setting time    hydration products    optimal content
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: *国家自然科学基金(51272283)
通讯作者:  胡志德:男,博士,讲师,主要从事智能材料的制备及性能研究 E-mail:huzd6503@163.com   
作者简介:  赵思勰:男,1994年生,硕士研究生,主要从事相变材料和磷酸镁水泥研究 E-mail:1527794185@qq.com
引用本文:    
赵思勰, 晏华, 汪宏涛, 李云涛, 戴丰乐, 薛明, 胡志德. 复合无机水合盐对磷酸镁水泥水化及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 156-162.
ZHAO Sixie, YAN Hua, WANG Hongtao, LI Yuntao, DAI Fengle, XUE Ming, HU Zhide. Effect of Composite Hydrated Salt on Hydration and Properties of Magnesium Phosphate Cement. Materials Reports, 2017, 31(23): 156-162.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.023  或          https://www.mater-rep.com/CN/Y2017/V31/I23/156
1 Wang H T,Qian J S, Wang J G. Review of magnesia-phosphate cement[J]. Mater Rev, 2005,19(12):46(in Chinese).
汪宏涛, 钱觉时, 王建国. 磷酸镁水泥的研究进展[J]. 材料导报, 2005,19(12):46.
2 Yang Q, Zhu B, Wu X. Characteristics durability test of magnesium phosphate cement-based material for rapid repair of concrete[J]. Mater Struct, 2000,33(4):229.
3 Ding Z, Li Z. High-early-strength magnesium phosphate cement with fly ash[J]. ACI Mater J, 2005,102(6):375.
4 Buj I, Torras J, Rovira M, et al. Leaching behavior of magnesium phosphate cements containing high quantities of heavy metals[J]. J Hazardous Mater, 2010,175(1):789.
5 Ji F, Jiao B X, Qiu T. The effects of urea on setting time and hydration exothermic of magnesium phosphate cement[J]. China Concr Cem Res, 2013(5):1(in Chinese).
吉飞, 焦宝祥, 丘泰.尿素对磷酸镁水泥凝结时间和水化放热的影响[J]. 混凝土与水泥制品, 2013(5):1.
6 Li Y T,Yan H,Wang H T,et al. Preparation of composite phase change materials and its effect on the hydration heat of magnesium phosphate cement[J]. J Funct Mater, 2016,47(7):07211(in Chinese).
李云涛, 晏华, 汪宏涛, 等. 复合相变材料的制备及其对磷酸镁水泥水化热的影响[J].功能材料, 2016,47(7):07211.
7 Li Y T, Yan H, Wang H T, et al. Effect of paraffin/expand graphite composite phase change material on the hydration performance of magnesium phosphate cement[J]. Bull Chin Ceram Soc, 2016,35(9):3007(in Chinese).
李云涛, 晏华, 汪宏涛, 等. 石蜡/膨胀石墨复合相变材料对磷酸镁水泥水化性能的影响[J]. 硅酸盐通报, 2016,35(9):3007.
8 Yang J M. Control on setting time and water stability of magnesium-potassium phosphate cement and mechanism[D]. Nanjing: Southeast University, 2011(in Chinese).
杨建明. 磷酸钾镁水泥凝结时间和水稳定性的调控及其机理[D]. 南京: 东南大学, 2011.
9 Yang J M, Qian C X, Jiao B X, et al. Effect of borax on hydration hardening of potassium and magnesia-phosphate cement paste[J]. J Mater Eng, 2010,28(1):31(in Chinese).
杨建明, 钱春香, 焦宝祥,等. 缓凝剂硼砂对磷酸镁水泥水化硬化特性的影响[J]. 材料科学与工程学报, 2010,28(1):31.
10Lai Z Y, Lai X, Shi J, et al. Effect of Zn2+ on the early hydration behavior of potassium phosphate based magnesium phosphate cement[J]. Constr Build Mater, 2016,129:70.
11Yang J M, Qian C X, Jiao B X, et al. Effect of NaH2PO4?10H2O on hydration hardening of potassium and magnesium phosphate cement[J]. J Build Mater, 2011,3(14):299(in Chinese).
杨建明, 钱春香, 焦宝祥, 等. NaH2PO4?10H2O对磷酸镁水泥水化硬化特性的影响[J]. 建筑材料学报, 2011,3(14):299.
12Chang Y, Shi C J, Yang N, et al. Effect of fineness of magnesium oxide on properties of magnesium potassium phosphate cement[J]. J Chin Ceram Soc, 2013,41(4):492(in Chinese).
常远, 史才军, 杨楠, 等. 不同细度 MgO 对磷酸钾镁水泥性能的影响[J]. 硅酸盐学报, 2013,41(4):492.
13Yang K R, Zhang C W, Guo Y H, et al. Study on retarding the set of sulphoaluminate cement[J]. J Chin Ceram Soc, 2002,30(2):155(in Chinese).
杨克锐, 张彩文, 郭永辉, 等. 延缓硫铝酸盐水泥凝结的研究[J]. 硅酸盐学报, 2002,30(2):155.
14Wang Z L, Liu K, Zhang C. Mechanism of hydration reaction in magnesia-phosphate cement[J]. Mater Rev, 2014,28(s2):323(in Chinese).
王中良, 刘凯, 张超. 磷酸镁胶凝材料的水化机理研究[J]. 材料导报, 2014,28(专辑24):323.
15Yang J M, Shi C J, Chang Y, et al. Hydration and hardening characteristics of magnesium potassium phosphate cement paste containing composite retarders[J]. J Build Mater, 2013,16(1):43(in Chinese).
杨建明, 史才军, 常远, 等. 掺复合缓凝剂的磷酸钾镁水泥浆体的水化硬化特性[J]. 建筑材料学报, 2013,16(1):43.
16Zhang S H. Study on the performance and mechanism of magnesium phosphate cement in solidifying Sr2+, Cs+[D]. Chongqing: Logistical Engineering University, 2016(in Chinese).
张时豪.磷酸镁水泥固化核素Sr2+、Cs+的性能及机理研究[D].重庆: 后勤工程学院, 2016.
17Duan X Y, Lv S Z, Lai Z Y, et al. Preparation of a multi-composite retarder and its effect on properties of magnesium phosphate cement[J]. J Wuhan University of Technology, 2014,36(10):20(in Chinese).
段新勇, 吕淑珍, 赖振宇, 等. 多元复合缓凝剂制备及其对磷酸镁水泥性能的影响[J]. 武汉理工大学学报, 2014,36(10):20.
18Wang H T, Ding J H, Zhang S H, et al. Study on the influence of magnesium phosphate cement hydration heat[J]. J Funct Mater, 2015,46(22):22098(in Chinese).
汪宏涛, 丁建华, 张时豪, 等. 磷酸镁水泥水化热的影响因素研究[J].功能材料, 2015,46(22):22098.
[1] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[2] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[3] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[4] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[5] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[6] 仲小凡, 王爱国, 于乐乐, 刘开伟, 张祖华, 徐志杰, 孙道胜. 缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展[J]. 材料导报, 2024, 38(19): 23070036-9.
[7] 朱文超, 张雷, 张亚洲, 李明清, 张建峰, 闵凡路. 碱性速凝剂对盾构壁后注浆浆体性能影响及微观机理研究[J]. 材料导报, 2024, 38(19): 23040077-7.
[8] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[9] 李悦, 龙世儒, 王子赓, 王楠. 磷镁物质的量比对天然水镁石制备的磷酸镁水泥性能的影响[J]. 材料导报, 2024, 38(17): 23120159-6.
[10] 陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
[11] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[12] 刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
[13] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[14] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[15] 朱倍, 徐迅, 胡海龙, 余波, 朱妍, 甘露. 基于改性剂调控517相改善碱式硫酸镁水泥耐水性能[J]. 材料导报, 2023, 37(19): 22050264-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed