Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 120-124    https://doi.org/10.11896/j.issn.1005-023X.2017.023.017
  专题栏目:超高性能混凝土及其工程应用 |
配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*
杨医博1, 2, 杨凯越1, 吴志浩1, 林少群1, 丘广宏1, 燕哲1, 彭章锋1, 林燕姿1, 郭文瑛1, 王恒昌1
1 华南理工大学土木与交通学院,广州 510640;
2 华南理工大学亚热带建筑科学国家重点实验室,广州 510640
An Experimental Study on the Influence of Reinforced Ultra-high Performance Concrete Permanent Template to Short Column's Mechanical Property
YANG Yibo1, 2, YANG Kaiyue1, WU Zhihao1, LIN Shaoqun1, QIU Guanghong1, YAN Zhe1, PENG Zhangfeng1, LIN Yanzi1, GUO Wenying1, WANG Hengchang1
1 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640;
2 State Key Laboratory of Subtropical Architectures Science, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 1160KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步提高在海洋浪溅区等严重氯盐腐蚀环境下混凝土结构的耐久性,采用以配筋超高性能混凝土(UHPC)用作免拆模板加素填芯混凝土的技术思路,通过轴压实验研究了配筋UHPC用作免拆模板对短柱轴压力学性能的影响。结果表明,与破坏时海工混凝土柱出现大量的混凝土剥落和钢筋裸露不同,UHPC免拆模板柱的整体性良好,表面的UHPC仅出现少量剥落且钢筋不外露。同时,在等截面和相同配筋的情况下,UHPC免拆模板方柱和圆柱的开裂荷载明显高于高强海工混凝土方柱和圆柱的极限荷载,且分别达到其自身极限荷载的93%和88%。考虑到混凝土对钢筋的有效保护是影响海工混凝土结构耐久性的重要因素,配筋UHPC用作免拆模板这一思路在提高柱体的极限承载力、延性、刚度的同时还可以提高结构的开裂荷载、抗裂性能,有效地提高结构耐久性,适用于沿海工程。其中圆柱的力学性能提高幅度要远高于方柱,从配筋UHPC免拆模板的使用效果和施工便利性考虑,优选UHPC免拆模板圆柱。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨医博
杨凯越
吴志浩
林少群
丘广宏
燕哲
彭章锋
林燕姿
郭文瑛
王恒昌
关键词:  超高性能混凝土  免拆模板  短柱  轴压实验  氯盐环境  耐久性  方柱  圆柱    
Abstract: In order to enhance the concrete structure’s durability subjected to severe corrosion conditions such as splash zone, a solution was proposed which combines reinforced ultra-high performance concrete (UHPC) permanent template and core plain concrete. The mechanical influence of reinforced UHPC permanent template to short columns was investigated via axial bearing test. According to the experimental results, instead of spalling greatly and exposing concrete directly, UHPC permanent template columns displayed better integrity, only spalling slightly on UHPC’s surface and protecting the reinforcement well when destroyed. The crack bearing capacities of square and cylindrical UHPC permanent template columns reached 93% and 88% of the corresponding ultimate bearing capacities, respectively, which also exceed the ultimate bearing capacities of traditional high strength marine square/cylindrical columns with the same cross-sections and reinforcement arrangements. Considering that the effective concrete cover is one of the most crucial factors for structure durability, reinforced UHPC permanent template can improve ultimate bearing capacity, ductility, rigidity of the column, and moreover, the structure’s cracking load and cracking resistance, which effectively promoted durability and is applicable for marine projects. In comparison, cylindrical UHPC permanent template columns achieved larger mechanical improvements than square ones, and are more favorable in terms of mechanical behavior and construction convenience.
Key words:  ultra-high performance concrete    permanent template    short column    axial bearing test    chloride environment    durability    square column    cylindrical column
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU375  
基金资助: *华南理工大学亚热带建筑科学国家重点实验室自主研究课题项目(2016KB14); 广东省水利科技创新项目(2017-22)
作者简介:  杨医博:男,1977年生,博士,副教授,硕士研究生导师,主要从事结构耐久性、高性能与超高性能混凝土、固体废弃物综合利用等研究 E-mail:yangyibo@scut.edu.cn
引用本文:    
杨医博, 杨凯越, 吴志浩, 林少群, 丘广宏, 燕哲, 彭章锋, 林燕姿, 郭文瑛, 王恒昌. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*[J]. CLDB, 2017, 31(23): 120-124.
YANG Yibo, YANG Kaiyue, WU Zhihao, LIN Shaoqun, QIU Guanghong, YAN Zhe, PENG Zhangfeng, LIN Yanzi, GUO Wenying, WANG Hengchang. An Experimental Study on the Influence of Reinforced Ultra-high Performance Concrete Permanent Template to Short Column's Mechanical Property. Materials Reports, 2017, 31(23): 120-124.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.017  或          https://www.mater-rep.com/CN/Y2017/V31/I23/120
1 Wang Guoxing. The comparative study on application of surface treatment technology to anti-chloride high performance concrete [D]. Guangzhou: South China University of Technology, 2012(in Chinese).
王国醒. 抗氯盐高性能混凝土表面处理技术对比研究[D]. 广州:华南理工大学,2012.
2 Yang Shuyan, Song Xiaobing, Jia Hongxue, et al. Experimental research on hysteretic behaviors of corroded reinforced concrete co-lumns with different maximum amounts of corrosion of rebar[J]. Constr Building Mater, 2016,121:319.
3 中国国家标准化管理委员会. GB-T 31387-2015 活性粉末混凝土 [S]. 北京:中国标准出版社,2015:16.
4 Zhao Yun, Lian Huizhen, Jin Jianchang. New steel-concrete composite mode—UHPC/UHPFRC fourth[J]. China Concr, 2014(1):48 (in Chinese).
赵筠, 廉慧珍, 金建昌. 钢-混凝土复合的新模式——超高性能混凝土(UHPC/UHPFRC)之四[J]. 混凝土世界, 2014(1):48.
5 Wang Dehui, Shi Caijun, Wu Linmei. Research and application of ultra-high performance concrete(UHPC) in China[J]. J Chin Ceram Soc, 2016,35(1):141(in Chinese).
王德辉,史才军,吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016,35(1):141.
6 Yoo Doo-yeol, Yoon Young-Soo. A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete[J]. Int J Concr Struct Mater, 2016, 10(2):125.
7 Aoude H, Dagenais F P, Burrell R P, et al. Behavior of ultra-high performance fiber reinforced concrete columns under blast loading [J]. Int J Impact Eng, 2015,80:185.
8 Shota Ichikawa, Hiroshi Matsuzaki, Ayman Moustafa, et al. Seismic-resistant bridge columns with ultrahigh-performance concrete segments[J].J Bridge Eng, 2016, 21(9):04016049-1.
9 Martin Empelmann,Corinna Muller, Danirel Busse. Compact reinforced UHPC columns with circular hollow cross-section[J]. Bautechnik, 2016,93(6): 345.
10 Chen Baochun, Ji Tao, Huang Qingwei, et al. Review of research on ultra-high performance concrete[J]. J Architecture Civil Eng, 2014,31(3):1(in Chinese).
陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014,31(3):1.
11 Wu Xiangguo. Design conception of ultra-performance fiber reinforcement concrete hybrid pier with durability consideration[J]. J North China Institute of Water Conservancy and Hydroelectric Po-wer, 2012, 33(6):73(in Chinese).
吴国香. 基于耐久性的超高性能纤维改性混凝土叠合墩柱设计概念 [J]. 华北水利水电学院学报, 2012, 33(6): 73.
12 Wang Jun, Li Lun, Li Xing, et al. Research on the design method for the steel fiber RPC column-permanent template[J].J Shenyang Jianzhu University (Natural Science), 2014,30(6):999 (in Chinese).
王均, 李论, 李行, 等. 钢纤维RPC永久柱模设计方法[J]. 沈阳建筑大学学报(自然科学报),2014,30(6):999.
13 赵新宇.UHPCC管——钢筋混凝土典型叠合结构性能研究[D].哈尔滨: 哈尔滨工程大学, 2012.
14 Wang Jun, Wang Zhibin, Li Lun, et al. Mechanical behavior of rei-nforced concrete short columns with steel fiber RPC column permanent template subjected axial compression[J]. J Architecture Civil Eng, 2016, 33(2): 98(in Chinese).
王钧,王志彬,李论,等. 配有钢纤维RPC免拆柱模的钢筋混凝土短柱轴压力学性能[J]. 建筑科学与工程学报,2016, 33(2): 98.
15 Tao Jianjian. Experimental study on bearing performance of reactive powder concrete reinforced column subjected to axial load[D]. Changsha: Hunan University,2013(in Chinese).
陶剑剑. 活性粉末混凝土加固RC柱轴压性能试验研究[D]. 长沙:湖南大学,2013.
16 Hao Xiuwen. Experimental study on the mechanical behavior of rea-ctive powder concrete piers with hollow cross-sections subjected to cyclic loading[J]. J China Railway Soc, 2009, 31(5):60(in Chinese).
郝秀文. 反复荷载作用下活性粉末混凝凝土空心桥墩力学性能的试验研究[J]. 铁道学报,2009, 31(5):60.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[3] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[4] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[5] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[6] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[7] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[8] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[9] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[10] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[11] 赵增丰, 蒲紫盈, 林璨, 肖建庄, 姚磊, 姬宸源, 刘雅婕. 免烧陶粒及陶粒混凝土性能研究进展[J]. 材料导报, 2024, 38(20): 23100019-13.
[12] 于乐乐, 王爱国, 仲小凡, 刘开伟, 潘耀辉, 肖必华, 孙道胜. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报, 2024, 38(20): 23080244-9.
[13] 褚洪岩, 史文芳, 王群, 蒋金洋. 采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究[J]. 材料导报, 2024, 38(19): 23070076-7.
[14] 杨尊, 李碧雄, 张治博, 李梁慧. 高钛矿渣在水泥混凝土中的研究应用进展[J]. 材料导报, 2024, 38(18): 22120226-9.
[15] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed