Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 125-131    https://doi.org/10.11896/j.issn.1005-023X.2017.023.018
  专题栏目:超高性能混凝土及其工程应用 |
钢管钢纤维高强混凝土抗冲击压缩性能的试验研究与数值模拟*
李季, 石少卿, 何秋霖, 王起帆
后勤工程学院军事土木工程系,重庆 401331
Experimental Study and Numerical Simulation on the Impact Compression Performance of Steel Fiber Reinforced High Strength Concrete-filled Steel Tube
LI Ji, SHI Shaoqing, HE Qiulin, WANG Qifan
Department of Civil Engineering, Logistical Engineering University, Chongqing 401331
下载:  全 文 ( PDF ) ( 2390KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 遮弹层的建成及优化对防护工程的发展尤为重要。钢管钢纤维高强混凝土蜂窝遮弹层是一种具有高强抗力的新型遮弹层,文章对其组成构件钢管钢纤维高强混凝土进行霍普金森压杆(SHPB)动态力学性能试验,并借助动力有限元分析软件LS-DYNA进行数值模拟。冲击压缩试验中,试件的钢纤维掺量分别为0%、0.5%、1.0%、1.5%,钢管壁厚分别为2 mm、3 mm。结果表明钢管钢纤维高强混凝土具有应变率强化效应,应变率越高,试件的动态抗压强度越大。当气压为1.0 MPa时,壁厚3 mm、钢纤维掺量1.5%的试件强度达258.3 MPa。与钢纤维高强混凝土相比,钢管钢纤维高强混凝土的抗冲击压缩性能更好,动态抗压强度最大增幅达35.4%,且具备承受多次冲击压缩作用的能力。数值模拟与试验结果吻合度高,表明数值模拟方法具有可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李季
石少卿
何秋霖
王起帆
关键词:  钢管钢纤维高强混凝土  冲击压缩  应力波    
Abstract: The construction and optimization of bursting layer plays a significant role in the development of defensive fortifications. The honeycomb bursting layer made of steel fiber reinforced high strength concrete-filled steel tube is a new type of bursting layer with high impact resistance. In this paper, a dynamic mechanical test and a numerical simulation for a lab-prepared steel fiber reinforced high strength concrete-filled steel tube were conducted by using a split Hopkinson pressure bar (SHPB) set-up and the kinetic finite element analysis software LS-DYNA, respectively. The steel fiber content and tube thickness of the high strength concrete filled steel tubes for impact compression test were set at 0%, 0.5%, 1.0%, 1.5% and 2 mm, 3 mm, respectively. The results showed that steel fiber reinforced high strength concrete-filled steel tube exhibits strain rate strengthening effect, as higher strain rates corresponded to greater dynamic compressive strengths. When the air pressure was 1.0 MPa, the specimen with 3 mm tube thickness and 1.5% steel fiber content achieved a dynamic compressive strength of 258.3 MPa. Compared with steel fiber reinforced high strength concrete, the steel fiber reinforced high strength concrete filled-steel tube possesses better impact compression perfor-mance, as the maximum relative increase of dynamic compressive strength reached 35.4%, also the ability to withstand repeated impact compressions. The numerical simulation coincided well with the experimental results, which confirmed the feasibility of the numerical simulation method.
Key words:  steel fiber reinforced high strength concrete-filled steel tube    impact compression    stress wave
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TQ325.1+2  
基金资助: *全军后勤科研计划项目(BY211C015)
作者简介:  李季:男,1991年生,博士研究生,主要从事新型遮弹层抗冲击抗侵彻性能研究 石少卿:通讯作者,男,教授,博士研究生导师,主要从事防护工程研究 E-mail:ssq601@163.com
引用本文:    
李季, 石少卿, 何秋霖, 王起帆. 钢管钢纤维高强混凝土抗冲击压缩性能的试验研究与数值模拟*[J]. CLDB, 2017, 31(23): 125-131.
LI Ji, SHI Shaoqing, HE Qiulin, WANG Qifan. Experimental Study and Numerical Simulation on the Impact Compression Performance of Steel Fiber Reinforced High Strength Concrete-filled Steel Tube. Materials Reports, 2017, 31(23): 125-131.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.018  或          https://www.mater-rep.com/CN/Y2017/V31/I23/125
1 Ren Xingtao, Zhou Tingqing, Zhong Fangping. Dynamic mechanical behavior of steel-fiber reactive powder concrete[J]. Explosion Shock Waves, 2011, 31(5):540(in Chinese).
任兴涛, 周听清, 钟方平, 等. 钢纤维活性粉末混凝土的动态力学性能[J]. 爆炸与冲击, 2011, 31(5):540.
2 Shan Jianhua. Experimental study and finite element analysis of concrete filled steel tube under impact loading[D]. Chngsha:Hunan University, 2007(in Chinese).
单建华. 钢管混凝土在冲击荷载作用下实验研究和有限元分析[D]. 长沙: 湖南大学, 2007.
3 Zhu Qian. Study on static and impact resistance of RPC steel stub columns[D]. Xi??an: Changan University, 2014(in Chinese).
朱倩. 钢管RPC短柱静力及抗冲击性能研究[D]. 西安: 长安大学, 2014.
4 Chen Junling, Shu Wenya, Li Jinwei, et al. Experimental study on dynamic mechanical property of Q235 steel at different strain rates[J]. J Tongji University(Nat Sci), 2016, 44(7):1071(in Chinese).
陈俊岭, 舒文雅, 李金威, 等. Q235钢材在不同应变率下力学性能的试验研究[J]. 同济大学学报(自然科学版), 2016, 44(7):1071.
5 Zhang Hua, Gao Yuwei, Li Fei, et al. Experimental study on dynamic properties and constitutive model of polypropylene fiber concrete under high strain rate[J]. J Central South University(Sci Technol), 2013(8):3464(in Chinese).
张华, 郜余伟, 李飞, 等. 高应变率下聚丙烯纤维混凝土动态力学性能和本构模型[J]. 中南大学学报(自然科学版), 2013(8):3464.
6 Shemirani A B, Naghdabadi R, Ashrafi M J. Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus[J]. Constr Build Mater, 2016, 125:326.
7 Xia K, Yao W. Dynamic rock tests using split Hopkinson (Kolsky) bar system—A review[J]. J Rock Mech Geotech Eng, 2015, 7:27.
8 Zhong W Z, Rusinek A, Jankowiak T, et al. Influence of interfacial friction and specimen configuration in split Hopkinson pressure bar system[J]. Tribology Int, 2015, 90:1.
9 Pang Shumeng, Huan Shi, Tao Weijun, et al. Mesoscopic numerical study on steel fiber reinforced concrete under impact loading[J]. J Guangzhou University(Nat Sci Ed), 2015, 14(1):61(in Chinese).
庞书孟, 浣石, 陶为俊, 等. 冲击荷载下钢纤维混凝土的细观数值研究[J]. 广州大学学报(自然科学版), 2015, 14(1):61.
10 Chen Bofei, Qiu Xin, Chen Jiangying. Numerical simulation of concrete impact test using split Hopkinson pressure bundled bars device[J]. Chin J Appl Mech, 2017, 34(1):125 (in Chinese).
陈博斐, 邱欣, 陈江瑛. 混凝土SHPB束杆装置冲击实验的数值仿真[J]. 应用力学学报, 2017, 34(1):125.
11 Durand B, Delvare F, Bailly P, et al. A split Hopkinson pressure bar device to carry out confined friction tests under high pressures[J]. Int J Impact Eng, 2016, 88:54.
12 Barr A D, Clarke S D, Rigby S E, et al. Design of a split Hopkinson pressure bar with partial lateral confinement[J]. Measurement Sci Technol, 2016, 27(12):125903.
13 Wang Yonghua, Liang Xiaoyan, Wang Zhengdao, et al. Experimental study on the impact compressive behavior of reactive powder concrete[J]. Eng Mech, 2008, 25(11):167(in Chinese).
王勇华, 梁小燕, 王正道, 等. 活性粉末混凝土冲击压缩性能实验研究[J]. 工程力学, 2008, 25(11):167.
14 Jiang Guoping, Xiao Sanxia. SHPB experimental study of the late-ral effect under impact loading[J]. Concrete, 2015(12):1 (in Chinese).
蒋国平, 肖三霞. 混凝土材料惯性力效应SHPB实验研究[J]. 混凝土, 2015(12):1.
15 Chakraborty T, Mishra S, Loukus J, et al. Characterization of three Himalayan rocks using a split Hopkinson pressure bar[J]. Int J Rock Mech Mining Sci, 2016, 85:112.
[1] 杨荣周, 徐颖, 刘家兴, 丁进甫, 谢昊天. 砂岩与类砂岩材料的动态力学及破坏特征对比分析[J]. 材料导报, 2023, 37(23): 22030265-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed