Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 129-134    https://doi.org/10.11896/j.issn.1005-023X.2017.019.018
  新材料新技术 |
用于构建可溶性微针的基质材料及其复合材料*
章捷, 马凤森, 占浩慧, 黄颖聪
浙江工业大学药学院,生物制剂与材料实验室,杭州 310014
Matrix Materials and Their Composites for Dissolvable Microneedle Construction: a Review
ZHANG Jie, MA Fengsen, ZHAN Haohui, HUANG Yingcong
Biologics and Biomaterials Laboratory, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014
下载:  全 文 ( PDF ) ( 1333KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 可溶性微针作为新型透皮给药制剂,打破了传统皮肤给药制剂不能用于大分子药物经皮给药的局限,且具有无痛、无创、无出血、卫生、生物相容性好、便于患者自主使用等诸多优点。近年来可溶性微针的研究已成为备受关注的热点。基质材料的选择直接影响微针的制备及皮肤刺入、药物释放等性能。介绍了可溶性微针的研究现状,对基质材料进行了分类与介绍,并综述了基质材料的复合使用及效果。同时介绍了韧性材料和脆性材料的特性及其复合后的协同效果,进而对该领域存在的问题和研究方向进行了讨论和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章捷
马凤森
占浩慧
黄颖聪
关键词:  可溶性微针  材料分类  复合  韧性材料  脆性材料    
Abstract: As a novel transdermal drug delivery system, dissolvable microneedle has broken the limitations of traditional transdermal formulations which are not able to deliver macromolecular. Besides the aspect of macromolecular delivery, dissolvable microneedles have numerous advantages including small enough to avoid causing pain, minimal skin trauma, no bleeding or introduction of pathogens, good biocompatibility, easy to self-administration, etc. The study of dissolvable microneedle has recently become a hot topic. The choice of matrix materials directly affects the preparation process of microneedle, as well as the properties of skin puncturing and drug releasing. This paper introduces the research status of dissolvable microneedle, classifies and introduces the matrix materials, then summarizes the use of their compounds. The properties of ductile materials and brittle materials and their synergistic effects after composite are introduced as well. Finally, the existing problems and research directions in this field are discussed.
Key words:  dissolvable microneedle    material classification    composite    ductile material    brittle material
出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  R944.9  
  TB332  
基金资助: *浙江省重点科技创新团队项目(2013TD15)
作者简介:  章捷:男,1992年生,硕士研究生,研究方向为可溶性微针透皮给药系统 E-mail:18868816195@163.com 马凤森:通讯作者,男,1962年生,硕士,教授,硕士研究生导师,研究方向为生物材料与制剂研究评价、药物制剂新剂型与新技术 E-mail:merrigen@126.com
引用本文:    
章捷, 马凤森, 占浩慧, 黄颖聪. 用于构建可溶性微针的基质材料及其复合材料*[J]. 《材料导报》期刊社, 2017, 31(19): 129-134.
ZHANG Jie, MA Fengsen, ZHAN Haohui, HUANG Yingcong. Matrix Materials and Their Composites for Dissolvable Microneedle Construction: a Review. Materials Reports, 2017, 31(19): 129-134.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.018  或          https://www.mater-rep.com/CN/Y2017/V31/I19/129
1 Gerstel M S, Place V A. Drug delivery device: US, 3964482[P].1976-06-22.
2 Kim Y C, Park J H, Prausnitz M R. Microneedles for drug and vaccine delivery[J]. Adv Drug Delivery Rev,2012,64(14):1547.
3 Matsuo K, Hirobe S, Yokota Y, et al. Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza[J]. J Controlled Release,2012,160(3):495.
4 Matsuo K, Yokota Y, Zhai Y, et al. A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens[J]. J Controlled Release,2012,161(1):10.
5 Demuth P C, Garcia-Beltran W F, Ai-Ling M L, et al. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination[J]. Adv Funct Mater,2013,23(2):161.
6 Park Y H, Ha S K, Choi I, et al. Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery[J]. Biotechnol Bioprocess Eng,2016,21(1):110.
7 Ito Y, Maeda T, Fukushima K, et al. Permeation enhancement of ascorbic acid by self-dissolving micropile array tip through rat skin[J]. Chem Pharmaceutical Bull,2010,58(4):458.
8 Lee K, Lee C Y, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of mal-tose[J]. Biomaterials,2011,32(11):3134.
9 Zhu Z, Luo H, Lu W, et al. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide[J]. Pharmaceutical Res,2014,31(12):3348.
10 Liu S, Quan Y S, Fumio K, et al. Preparation and characterization of novel hyaluronic acid microneedles for insulin transdermal delivery[J]. J Shenyang Pharmaceutical University,2010,27(1):6(in Chinese).
刘姝, 权英淑, 神山文男, 等. 新型经皮传递胰岛素透明质酸微针制剂的制备及性能考察[J]. 沈阳药科大学学报,2010,27(1):6.
11 Liu S, Jin M N, Quan Y S, et al. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin[J]. J Controlled Release,2012,161(3):933.
12 Liu S, Wu D, Quan Y S, et al. Improvement of transdermal delivery of exendin-4 using novel tip-loaded microneedle arrays fabricated from hyaluronic acid[J]. Mol Pharm,2016,13(1):272.
13 Ye Y, Wang J, Hu Q, et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors[J]. ACS Nano,2016,10(9):8956.
14 Zhang Y, et al. Thrombin-responsive transcutaneous patch for auto-anticoagulant regulation[J]. Adv Mater,2017,29(4):1604043.
15 Ito Y, Murakami A, Maeda T, et al. Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats[J]. Int J Pharmaceutics,2008,349(1-2):124.
16 Tsioris K, Raja W K, Pritchard E M, et al. Fabrication of silk microneedles for controlled-release drug delivery[J]. Adv Funct Mater,2012,22(2):330.
17 Lee J W, Choi S O, et al. Dissolving microneedle patch for transdermal delivery of human growth hormone[J]. Small,2011,7(4):531.
18 Chan C, Caffarel-Salvador E, Brady A J, et al. Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: Potential for use in diagnosis and therapeutic drug monitoring[J]. PLOS ONE,2015,10(12):e0145644.
19 Caffarel-Salvador E, Tuan-Mahmood T M, Mcelnay J C, et al. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations[J]. Int J Pharm,2015,489(1-2):158.
20 Lutton R E, Larraneta E, Kearney M C, et al. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays[J]. Int J Pharm,2015,494(1):417.
21 Cha K J, Kim T, Park S J, et al. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles[J]. J Micromech Microeng,2014,24(11):115015.
22 Park J H, et al. Polymer particle-based micromolding to fabricate novel microstructures[J]. Biomed Microdevices,2007,9(2):223.
23 Dangol M, Yang H, Li C G, et al. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles[J]. J Controlled Release,2016,223:118.
24 Kim J D, et al. Droplet-born air blowing: Novel dissolving microneedle fabrication[J]. J Controlled Release,2013,170(3):430.
25 Liu S, Jin M N, Quan Y S, et al. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin[J]. Eur J Pharmaceutics Biopharmaceutics, 2014,86(2):267.
26 Sullivan S P, Murthy N, Prausnitz M R. Minimally invasive protein delivery with rapidly dissolving polymer microneedles[J]. Adv Mater,2008,20(5):933.
27 Lee J W, Park J H, Prausnitz M R. Dissolving microneedles for transdermal drug delivery[J]. Biomaterials,2008,29(13):2113.
28 Martin C J, Allender C J, Brain K R, et al. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications[J]. J Controlled Release, 2012,158(1):93.
29 Donnelly R F, Morrow D I, Singh T R, et al. Processing difficulties and instability of carbohydrate microneedle arrays[J]. Drug Deve-lopment Ind Pharmacy,2009,35(10):1242.
30 Gao Z P, Yue T L, Yuan Y H, et al. Research progress on producing technology and the applied characteristics of fructose[J]. J Northwest Sci-Tech University of Agriculture and Forestry (Nat Sci Ed),2003,31(s1):187(in Chinese).
高振鹏, 岳田利, 袁亚宏, 等. 果糖生产技术和应用研究进展[J]. 西北农林科技大学学报(自然科学版),2003,31(s1):187.
31 Mcgrath M G, Vucen S, Vrdoljak A, et al. Production of dissolvable microneedles using an atomised spray process: Effect of microneedle composition on skin penetration[J]. Eur J Pharmaceutics Biopharmaceutics,2014,86(2):200.
32 Peng Y F, Zhou Y B, Li Q, et al. Application prospect of trehalose[J]. China Food Additives, 2009(1):42(in Chinese).
彭亚锋, 周耀斌, 李勤, 等. 海藻糖的特性及其应用[J]. 中国食品添加剂,2009(1):42.
33 Vrdoljak A, et al. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods[J]. J Controlled Release,2016,225:192.
34 Choi H J, Yoo D G, Bondy B J, et al. Stability of influenza vaccine coated onto microneedles[J]. Biomaterials,2012,33(14):3756.
35 Lee K, Jung H. Drawing lithography for microneedles: A review of fundamentals and biomedical applications[J]. Biomaterials,2012,33(30):7309.
36 Chu L Y, Prausnitz M R. Separable arrowhead microneedles[J]. J Controlled Release,2011, 149(3):242.
37 Wei P P. Extraction and preparation of raffinose from defatted wheat germ[D]. Wuxi: Jiangnan University,2011(in Chinese).
魏培培. 脱脂麦胚中棉子糖的提取制备[D]. 无锡:江南大学,2011.
38 Zhang Y K, Jin J S. A kind of functional cosmetic ingredient—Hya-luronic acid[J]. China Surfactant Detergent Cosmetics,2004,34(2):111(in Chinese).
张延坤, 金京顺. 一种功能性化妆品原料——透明质酸[J]. 日用化学工业,2004, 34(2):111.
39 Bian J, Zhou Y P. Clinical application of hyaluronic acid [J]. Chin J Injury Repair Wound Healing (Electron Ed),2008,3(5):60(in Chinese).
卞靖, 周业平. 透明质酸的临床应用[J]. 中华损伤与修复杂志(电子版),2008,3(5):60.
40 Lu L, Leng Y, Chen Y. An experiment study on wound healing with exogenous hyaluronic acid[J]. Chin J Plastic Surgery,2000(1):30(in Chinese).
吕洛, 冷永成,陈玉林. 透明质酸对创面愈合胶原代谢影响的实验研究[J]. 中华整形外科杂志, 2000(1):30.
41 Katsumi H, Liu S, Tanaka Y, et al. Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: Evaluation of transdermal absorption, safety, and pharmacological effects after application in rats[J]. J Pharmaceutical Sci,2012,101(9):3230.
42 Monkare J, Reza Nejadnik M, Baccouche K, et al. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein deli-very[J]. J Controlled Release,2015,218:53.
43 Gao C M, Liu M Z, Lv S Y, et al. Preparation of sodium alginate hydrogel and its application in drug release[J]. Prog Chem,2013,25(6):1012(in Chinese).
高春梅, 柳明珠, 吕少瑜, 等. 海藻酸钠水凝胶的制备及其在药物释放中的应用[J]. 化学进展,2013,25(6):1012.
44 Yusuf K, Demir Z A, Oya Kerimoglu. Sodium alginate microneedle arrays mediate the transdermal delivery of bovine serum albumin[J]. Plos One,2013,8(5):1224.
45 Li H P, Li B, et al. Advances in characterization of amylose and amylopectin starch[J]. Food Sci,2010,31(11):273(in Chinese).
李海普, 李彬, 等. 直链淀粉和支链淀粉的表征[J]. 食品科学,2010,31(11):273.
46 Wendorf J R, Ghartey-Tagoe E B, Williams S C, et al. Transdermal delivery of macromolecules using solid-state biodegradable microstructures[J]. Pharmaceutical Res,2010,28(1):22.
47 Hassan C M, Stewart J E, Peppas N A. Diffusional characteristics of freeze/thawed poly(vinyl alcohol) hydrogels: Applications to protein controlled release from multilaminate devices[J]. Eur J Pharmaceutics Biopharmaceutics,2000,49(2):161.
48 Dou X W. Preparation of phase transition hydrogel microneedle arrays for transdermal delivery of insulin[D]. Shanghai: Shanghai Jiao Tong University,2009(in Chinese).
窦学文. 用于胰岛素透皮给药的相转化水凝胶微针点阵的制备[D]. 上海:上海交通大学, 2009.
49 Fukushima K, Ise A, Morita H, et al. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats[J]. Pharmaceutical Res,2010,28(1):7.
50 Hiraishi Y, Nakagawa T, Quan Y S, et al. Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system[J]. Int J Pharmaceutics,2013,441(1-2):570.
51 Hou J. The study on insoluble silk microneedle[D]. Suzhou:Soochow University,2014(in Chinese).
侯静. 不溶化丝素微针的制备与研究[D]. 苏州:苏州大学,2014.
52 Yu J. Synthesis and characterization of polvglycolicacid[D]. Wuhan: Wuhan University of Technology,2006(in Chinese).
于娟. 聚羟基乙酸(PGA)的合成及性能表征[D]. 武汉:武汉理工大学,2006.
53 Wang Z Y, Zhao Y M. Polyglycolic acid biodegradable polymer[J]. Guangzhou Chem, 2004,29(1):50(in Chinese).
汪朝阳, 赵耀明. 聚乙醇酸类生物降解高分子[J]. 广州化学,2004,29(1):50.
54 Park J H, Allen M G, Prausnitz M R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery[J]. J Controlled Release,2005,104(1):51.
55 Yu D M, Cao Y M. Absorbable polymer polyglycolic acid[J]. New Chem Mater,1996(1):17(in Chinese).
于德梅, 曹有名. 可吸收性聚合物聚乙醇酸[J]. 化工新型材料,1996(1):17.
56 Park J H, et al. Polymer microneedles for controlled-release drug delivery[J]. Pharmaceutical Res,2006,23(5):1008.
57 Kim M, Jung B, Park J H. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin[J]. Biomaterials,2012,33(2):668.
58 Wang D G, Zhen H, Hu Y J, et al. Biocompatibility study of implantation and degradation products of polyvinyl alcohol[J]. Beijing Biomed Eng,1996(3):165(in Chinese).
王定国, 郑华, 胡颖嘉, 等. 聚乙烯醇体内植入和降解产物生物相容性研究[J]. 北京生物医学工程,1996(3):165.
59 Donnelly R F, Majithiya R, Singh T R, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique[J]. Pharmaceutical Res,2011,28(1):41.
60 Robinson B V, Sullivan F M, Borzelleca J F, et al. PVP, a critical review of kinetics and toxicology of polyvinylpyrrolidone (povidone)[M].Boca Raton: Crc Press,1990.
61 Feng Y. Optimization of microneedles and application in the modle drug[D]. Shanghai: Shanghai Jiao Tong University,2013(in Chinese).
冯艳. 微针的处方优化及其在模型药物中的应用[D]. 上海:上海交通大学,2013.
62 Raphael A P, Prow T W, Crichton M L, et al. Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays[J]. Small,2010,6(16):1785.
63 Donnelly R F, Mccrudden M T, Zaid Alkilani A, et al. Hydrogel-forming microneedles prepared from "super swelling" polymers combined with lyophilised wafers for transdermal drug delivery[J]. PLOS ONE,2014,9(10):e111547.
64 Wang Q Q, Ma T, Li J C, et al. The preparation of the dissolving microneedle array of macromolecular drugs through percutaneous release[J]. J Bengbu Medical College,2016,41(4):523(in Chinese).
王清清, 马涛, 李见春, 等. 应用于大分子药物经皮释药的可溶微针贴片制备[J]. 蚌埠医学院学报,2016,41(4):523.
65 Chu L Y, Choi S O, Prausnitz M R. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs[J]. J Pharmaceutical Sci,2010,99(10):4228.
66 Wu Z Z, et al. The fabrication and optimization of complex hyaluronic acid microneedles[J]. Prog Modern Biomed,2016,16(2):206(in Chinese).
吴造展, 尹芹, 陈丽竹, 等. 复合透明质酸微针制剂的制备及优化[J]. 现代生物医学进展, 2016,16(2):206.
67 Wu X X, Cao Y J, Gui S Y. Preparation of self-dissolving microneedles and its influence on transdermal delivery of sinomenine hydrochloride gel[J]. Anhui Medical Pharmaceutical J,2015(6):1035(in Chinese).
吴星星, 曹英骥, 桂双英. 自溶性微针的制备及其对盐酸青藤碱凝胶透皮性能的影响[J]. 安徽医药,2015(6):1035.
68 Lu Y, Mantha S N, Crowder D C, et al. Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays[J]. Biofabrication,2015,7(4):045001.
69 Ke C J, Lin Y J, Hu Y C, et al. Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres[J]. Biomaterials,2012,33(20):5156.
70 Guo T, Zhang Y T, Zhao J H, et al. Application of lipid carriers combining microneedle in transdermal drug delivery[J]. J Chin Pharmaceutical Sci,2015,50(13):1085(in Chinese).
郭腾, 张永太, 赵继会, 等. 脂质载体结合微针在经皮给药中的应用[J]. 中国药学杂志, 2015,50(13):1085.
71 Fukuoka E, et al. Some physicochemical properties of glassy indomethacin[J]. Chem Pharmaceutical Bull,1986,34(10):4314.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[4] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[5] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[6] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[7] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[8] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[9] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[10] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[11] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[12] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[13] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[14] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[15] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed