Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 132-137    https://doi.org/10.11896/j.issn.1005-023X.2017.014.028
  材料研究 |
超疏水仿生水泥混凝土路面防覆冰技术及效能评价*
高英力, 李学坤, 代凯明, 余先明, 袁江
长沙理工大学桥梁工程安全控制省部共建教育部重点实验室, 长沙 410114;
Anti-icing Technology and Effectiveness Evaluation of Super-hydrophobic Bionic Cement Concrete Pavement
GAO Yingli, LI Xuekun, DAI Kaiming, YU Xianming, YUAN Jiang
Key Laboratory of Bridge Engineering Safety Control by Hunan Province, Department of Education, Changsha University of Science & Technology, Changsha 410114;
下载:  全 文 ( PDF ) ( 1762KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过微纳米路表构建与超疏水材料涂覆技术相结合,制备了超疏水仿生水泥混凝土路面模型试件;开展超疏水材料涂覆技术研究,分析总结其制备工艺;采用自行设计的“冰-路”附着强度测试装置进行防覆冰性能测试,同时开展接触角测量试验、路面表面能计算及耐久性试验,综合评价超疏水仿生水泥混凝土路面的疏水、防冰效能。结果表明:超疏水水泥混凝土试件表面冰的残留率为29.9%,是普通试件的1/3左右,间接反映了超疏水路面具有较好的疏冰性能;与普通试件的接触角0°相比,超疏水水泥混凝土试件的接触角为153.5°,达到超疏水状态;表面能计算表明超疏水材料的作用降低了路面表面能,仅为普通水泥路面的3.4%,进一步验证了超疏水水泥混凝土路面可显著降低“冰-路”附着强度;通过模拟轮胎与路面的摩擦作用,接触角依然在90°以上,表明超疏水路面耐久性良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高英力
李学坤
代凯明
余先明
袁江
关键词:  超疏水  防覆冰  水泥混凝土路面  附着强度  表面能  效能评价    
Abstract: The model of super-hydrophobic bionic cement concrete pavement was prepared, combining micro-nano pavement building with super-hydrophobic material coating technology. The coating technology of super-hydrophobic materials was studied and the preparation process was analyzed. Anti-icing performance was tested by self-designed ice-road adhesion strength testing device, the contact angle and durability were tested, the surface energy was calculated, then the anti-icing performance of super-hydrophobic bionic cement concrete pavement was evaluated comprehensively. The results indicate that the residual rate of ice on the surface of super-hydrophobic cement concrete specimens is 29.9%, which is about 1/3 of the common specimen, showing good anti-ice perfor-mance. The contact angle of the super-hydrophobic cement concrete specimen is 153.5°, while the contact angle of the common specimen is 0°. The calculation of surface energy reveal that the construction of the super-hydrophobic coating can reduce the surface energy, merely 3.4% of the ordinary cement pavement. It is further verified that the super-hydrophobic cement concrete pavement can significantly reduce the ice-road adhesion strength. The contact angle is still above 90° by simulating the friction between the tire and the road surface, indicating that the super hydrophobic pavement has good durability.
Key words:  super-hydrophobic    anti-icing    cement concrete pavement    adhesion strength    surface energy    effectiveness eva-luation
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TB3  
  U416  
基金资助: *湖南省交通厅科技计划项目(201313);长沙理工大学桥梁工程安全控制省部共建教育部重点实验室开放基金项目
作者简介:  高英力:男,1977年生,教授,硕士研究生导师,主要从事新型道路建筑材料的开发及应用研究 E-mail:yingligao509@126.com
引用本文:    
高英力, 李学坤, 代凯明, 余先明, 袁江. 超疏水仿生水泥混凝土路面防覆冰技术及效能评价*[J]. 《材料导报》期刊社, 2017, 31(14): 132-137.
GAO Yingli, LI Xuekun, DAI Kaiming, YU Xianming, YUAN Jiang. Anti-icing Technology and Effectiveness Evaluation of Super-hydrophobic Bionic Cement Concrete Pavement. Materials Reports, 2017, 31(14): 132-137.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.028  或          https://www.mater-rep.com/CN/Y2017/V31/I14/132
1 Wang Zongpeng. Effect of super-hydrophobic coating on the frost resistance and anti-icing properties of concerte[D]. Harbin: Harbin Institute of Technology,2015(in Chinese).
王宗鹏. 超疏水涂层对混凝土抗冻性及防冰性影响研究[D]. 哈尔滨: 哈尔滨工业大学,2015.
2 Li Guanfeng, Li Lei, Song Le, et al. Discussion about technology of road deicing and sno-w melting[J]. China Highway,2013,22:126(in Chinese).
李冠峰, 李蕾, 宋乐, 等. 道路除冰融雪技术探讨[J]. 中国公路,2013,22:126.
3 Chen Mingyu. Research on snow melting and solar energy collection for thermal conductiveasphalt pavement[D].Wuhan: Wuhan University of Technology,2012(in Chinese).
陈明宇. 导热沥青混凝土路面太阳能集热及融雪化冰研究[D].武汉: 武汉理工大学,2012.
4 Jiao Shengjie, Tang Xiangwei, Gao Ziyu,et al. Study of key techno-logy on microwave deicing efficiency[J]. China J Highway Transport,2008,21(6):121(in Chinese).
焦生杰, 唐相伟, 高子渝, 等. 微波除冰效率关键技术研究[J]. 中国公路学报,2008,21(6):121.
5 Wu Haiqin. A study of applied technology in deicing and melting sn-ow on road surface byelectric heating cable[D]. Beijing: Beijing University of Technology,2005(in Chinese).
武海琴. 发热电缆用于路面融雪化冰的技术研究[D]. 北京:北京工业大学,2005
6 Gao Yingli,Huang Liang,Zhang Hailun. Study on anti-freezing fu-nctional design of phase change and temperature control compo-site bridge decks[J]. Construction Building Mater, 2016,122:714.
7 江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京: 化学工业出版社,2007.
8 Rao Sunil M. The effectiveness of silane and siloxane treatments on the super-hydrophoicity and icephobicity of concrete surfaces[D]. University of Wisconsin-Madison,2013.
9 Yan Yingdi. The micro-nanostructure design of novel super-hydrophobic coatings and its anti-icing & icephobic properties[D]. Hangzhou: Zhejiang University,2014(in Chinese).
阎映弟. 新型超疏水涂层的微纳结构设计及其表面防覆冰作用[D]. 杭州: 浙江大学,2014.
10 Konstantin Sobolev, Habib Tabatabai, Jian Zhao, et al. Super-hydrophobic engineered cement-itious composites for highway bridge applications: Technology transfer and impleentation[R].Report No.CFIRE 06-03, National Center for Freight & Infrastructure Rsearch & Education,2013.
11 Lin Shangchun, Liu Mingwei, Mogadalai P Gururajan, et al. Modified Young′s equation for equilibrium dihedral angles of grain boun-dary grooves in thin films at the nanoscale[J]. Acta Mater,2016,102:364.
12 Van Oss C J, Chaudhury M K, Good R J. The mechanism of phase separation of polymersin organic media-apolar and polar systems[J]. Separation Sci Technol,1989,24(12):15.
[1] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[2] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[3] 朱飞, 杨雪, 苏静, 王鸿博. 酶促咖啡酸制备超疏水棉织物及其油水分离应用[J]. 材料导报, 2024, 38(3): 22100129-7.
[4] 李承刚, 吴石莲, 常国华, 关润泽, 周炳见, 杨彤, 杨宇. 光伏应用超疏水自清洁涂层材料的研究进展[J]. 材料导报, 2024, 38(23): 23080075-12.
[5] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[6] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[7] 赵静, 王选仓, 辛磊, 宋子豪, 任俊儒, 杨朝山. 用于微波除冰的吸波骨料选择及路面吸波功能层设计[J]. 材料导报, 2024, 38(12): 22090275-8.
[8] 艾恒雨, 梁洪博, 刘乾亮, 廉新宇, 刘彩虹. 超疏水蒸馏膜的功能改性研究进展[J]. 材料导报, 2024, 38(10): 22080205-9.
[9] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[10] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[11] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[12] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[13] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[14] 周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
[15] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed