Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 25-29    https://doi.org/10.11896/j.issn.1005-023X.2017.01.004
  材料综述 |
三维石墨烯复合材料的制备及其在超级电容器领域的研究现状
高 鑫,岳红彦,郭二军,姚龙辉,林轩宇,王 宝
哈尔滨理工大学材料科学与工程学院,哈尔滨 150040
Preparation and Applications of Three-dimensional Graphene Composites in Supercapacitors
GAO Xin, YUE Hongyan, GUO Erjun, YAO Longhui, LIN Xuanyu, WANG Bao
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040
下载:  全 文 ( PDF ) ( 1539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三维石墨烯具有独特的三维多孔结构,不仅增加了与电解液的接触面积,同时为固定在其表面的活性物质提供了快速的电子传输通道,有效地提高了超级电容器的电化学性能,使其被认为是最有前景的超级电容器电极材料。综述了目前获得多孔结构、大比表面积、优异导电性和良好力学性能的三维石墨烯的方法,并简述了其复合材料在超级电容器领域的应用现状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高 鑫
岳红彦
郭二军
姚龙辉
林轩宇
王 宝
关键词:  三维石墨烯  制备方法  复合材料  超级电容器    
Abstract: The porous structure of three-dimensional graphene not only improves the contact area with the electrolyte but also provides a fast electron transport channels for the active materials anchored on it, therefore the electrochemical performance of the supercapacitors can be effectively enhanced, which makes them to be the promising materials for supercapacitors. This review summarizes the preparation methods of the three-dimensional graphene with a porous structure, large specific surface area, good electrical conductivity and excellent mechanical properties. In addition, the application status of the three-dimensional graphene composites in supercapacitors is described.
Key words:  three-dimensional graphene    preparation methods    composites    supercapacitor
出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TM53  
基金资助: 国家自然科学基金(51201052);黑龙江省自然科学基金(LC2015020);黑龙江省教育厅科学技术研究项目(12541120);哈尔滨理工大学青年拔尖人才培养计划(201306
作者简介:  高鑫:男,1989年生,博士研究生,研究方向为金属基复合材料、新型储能材料 E-mail:gaoxin6825@126.com 岳红彦:通讯作者,男,1978年生,博士,教授,硕士研究生导师,研究方向为金属基复合材料、纳米材料和新型储能材料 E-mail:hyyue@hrbust.edu.cn
引用本文:    
高 鑫, 岳红彦, 郭二军, 姚龙辉, 林轩宇, 王 宝. 三维石墨烯复合材料的制备及其在超级电容器领域的研究现状[J]. 材料导报, 2017, 31(1): 25-29.
GAO Xin, YUE Hongyan, GUO Erjun, YAO Longhui, LIN Xuanyu, WANG Bao. Preparation and Applications of Three-dimensional Graphene Composites in Supercapacitors. Materials Reports, 2017, 31(1): 25-29.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.004  或          https://www.mater-rep.com/CN/Y2017/V31/I1/25
1 Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett,2008,8(3):902.
2 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
3 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
4 Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol,2008,3(2):101.
5 Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,2009,9(1):30.
6 Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat Mater,2011,10(6):424.
7 Ji H, Zhang L, Pettes M T, et al. Ultrathin graphite foam: A three-dimensional conductive network for battery electrodes[J]. Nano Lett,2012,12(5):2446.
8 Ke Q, Wang J. Graphene-based materials for supercapacitor electrodes-A review[J]. J Materiomics,2016,2(1):37.
9 Ma Y, Chen Y. Three-dimensional graphene networks: Synthesis, properties and applications[J]. National Sci Rev,2015,2(1):40.
10 Zhou Guojun, Ye Zhikai, Shi Weiwei, et al. Applications of three dimensional graphene and its composite materials[J]. Prog Chem,2014,26(6):950(in Chinese).
周国珺, 叶志凯, 石微微, 等. 三维(3D)石墨烯及其复合材料的应用[J]. 化学进展,2014, 26(6):950.
11 Yue H Y, Huang S, Chang J, et al. ZnO nanowire arrays on 3D hierachical graphene foam: Biomarker detection of Parkinson′s di-sease[J]. ACS Nano,2014,8(2):1639.
12 Zhou M, Lin T, Huang F, et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy sto-rage[J]. Adv Funct Mater,2013,23(18):2263.
13 Mecklenburg M, Schuchardt A, Mishra Y K, et al. Aerographite: Ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance[J]. Adv Mater,2012,24(26):3486.
14 Chen J, Sheng K, Luo P, et al. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors[J]. Adv Mater,2012,24(33):4569.
15 Choi B G, Yang M H, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano,2012,6(5):4020.
16 Meng Y, Wang K, Zhang Y, et al. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors[J]. Adv Mater,2013,25(48):6985.
17 Xia X H, Tu J P, Mai Y J, et al. Graphene sheet/porous NiO hybrid film for supercapacitor applications[J]. Chemistry-A Eur J,2011,17(39):10898.
18 Zhang R, Cao Y, Li P, et al. Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying[J]. Nano Res,2014,7(10):1477.
19 Sha J, Gao C, Lee S K, et al. Preparation of three-dimensional graphene foams using powder metallurgy templates[J]. ACS Nano,2016,10(1):1411.
20 Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4(7):4324.
21 Sheng K, Sun Y, Li C, et al. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering[J]. Sci Rep,2012,2:247.
22 Bai H, Li C, Wang X, et al. A pH-sensitive graphene oxide compo-site hydrogel[J]. Chem Commun,2010,46(14):2376.
23 El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science,2012,335(6074):1326.
24 Niu Z, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Adv Mater,2012,24(30):4144.
25 Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Adv Mater,2013,25(18):2554.
26 Dong X, Wang X, Wang J, et al. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode[J]. Carbon,2012,50(13):4865.
27 Peng L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J]. Nano Lett,2013,13(5):2151.
28 He Y M, Chen W J, Li X D, et al. Freestanding three-dimensional graphene MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano,2013,7(1):174.
29 El-Kady M F, Ihns M, Li M, et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-perfor-mance integrated energy storage[J]. PNAS,2015,112(14):4233.
30 Cao X H, Yin Z Y, Zhang H. Three-dimensional graphene mate-rials: Preparation, structures and application in supercapacitors[J]. Energy Environ Sci,2014,7:1850.
31 Wang C, Xu J, Yuen M F, et al. Hierarchical composite electrodes of nickel oxidenanoflake 3D graphene for high-performance pseudocapacitors[J]. Adv Funct Mater,2014,24(40):6372.
32 Jing M, Wang C, Hou H, et al. Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage[J]. J Power Sources,2015,298:241.
33 Dong C X, Xu H, Wang X W, et al. 3D graphene cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano,2012,6(4):3206.
34 Zhou W, Cao X, Zeng Z, et al. One-step synthesis of Ni3S2 nanorod @ Ni(OH)2 nanosheet core-shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors[J]. Energy Environ Sci,2013,6(7):2216.
35 Shen L, Wang J, Xu G, et al. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors[J]. Adv Energy Mater,2015,5(3):1400977.
36 Wu Q, Xu Y X, Yao Z Y, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS Nano,2010,4(4):1963.
37 Yu P, Zhao X, Huang Z, et al. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors[J]. J Mater Chem A,2014,2(35):14413.
38 Xu J J, Wang K, Zu S Z, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J]. ACS Nano,2010,4(9):5019.
39 Mahmoud M, El-Kady M F, Hao W, et al. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge[J]. Nanotechnology,2015,26(7):075702.
40 Iessa K H S, Zhang Y, Zhang G, et al. Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor[J]. J Power Sources,2016,302:92.
41 Wang S, Ma L, Gan M, et al. Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors[J]. J Power Sources,2015,299:347.
42 Zhang J, Wang J, Yang J, et al. Three-dimensional macroporous graphene foam filled with mesoporous polyaniline network for high areal capacitance[J]. ACS Sustainable Chem Eng,2014,2(10):2291.
43 Cao J, Wang Y, Chen J, et al. Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors[J]. J Mater Chem A,2015,3(27):14445.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[3] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[4] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[5] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[6] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[7] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[8] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[9] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[10] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[11] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[12] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[13] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[14] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[15] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed