Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 131-135    https://doi.org/10.11896/j.issn.1005-023X.2017.01.018
  环境修复材料 |
天然有机质对纳米碳管环境行为的影响研究进展
王 朋1, 张 迪1, 张 凰2, Ghosh Saikat1
1 昆明理工大学环境科学与工程学院,昆明 650500;
2 昆明理工大学,云南省食品安全研究院,昆明 650500
Influence of Natural Organic Matter on Environmental Behavior of Carbon Nanotubes: A Review
WANG Peng1, ZHANG Di1, ZHANG Huang2, Ghosh Saikat1
1 Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming 650500;
2 Yunnan Institute of Food Safety, Kunming University of Science & Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 1364KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着纳米技术的快速发展,大量的纳米碳管(CNTs)不可避免地释放到环境中。由于其较大的憎水性表面,CNTs与有机污染物和天然有机质(NOM)强烈地相互作用。综述了NOM存在下CNTs的环境行为,包括NOM对CNTs分散特性和吸附有机污染物特性的影响。着重论述了NOM的理化性质对CNTs分散的影响,“拉拉链”或“胶束包裹”是主要的分散机制。强调应该对不同分散机制下分散的CNTs与有机污染物的相互作用给予更多的关注,提出了目前在液相环境中直接测定CNTs表面积的新思路,并对今后的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王 朋
张 迪
张 凰
Ghosh Saikat
关键词:  极性  结构  离子强度  分散机制  吸附贡献    
Abstract: Rapid development of nanotechnology raises the possibility of imminent environmental release of carbon nanotubes (CNTs) due to their extensive production and usage. Enhanced hydrophobicity of CNTs promotes the strong interactions with orga-nic pollutants and natural organic matter (NOM). This paper reviews the environmental behavior of CNT in the presence of NOM, including the influence of NOM on CNTs dispersion and adsorption characteristics of organic pollutants. The “unzipping” and micelle coating have been reported as the prime dispersion mechanism depending on the physicochemical properties of NOM. The interactions between organic pollutants and dispersed CNTs by different dispersion mechanisms should be paid further attention to unveil under-lying adsorption mechanisms. Future research regarding direct measurement of CNTs surface area in the liquid phase and subsequent adsorption of organic pollutants may bring about a deeper insight to the complex environmental interactions.
Key words:  polarity    structure    ionic strength    dispersion mechanism    sorption contribution
出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TB34  
基金资助: 国家自然科学基金(41303093);云南省自然科学基金面上项目(2014FB121);昆明理工大学人才启动经费(14118762
作者简介:  王朋:男,1987年生,博士研究生,主要从事碳纳米材料的环境行为研究 E-mail:wpeng0815@163.com 张迪:通讯作者,男,1982年生,博士,副教授,主要从事碳纳米材料的环境行为研究 E-mail:zhangdi2002113@sina.com
引用本文:    
王 朋, 张 迪, 张 凰, Ghosh Saikat. 天然有机质对纳米碳管环境行为的影响研究进展[J]. 材料导报, 2017, 31(1): 131-135.
WANG Peng, ZHANG Di, ZHANG Huang, Ghosh Saikat. Influence of Natural Organic Matter on Environmental Behavior of Carbon Nanotubes: A Review. Materials Reports, 2017, 31(1): 131-135.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.018  或          https://www.mater-rep.com/CN/Y2017/V31/I1/131
1 Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56.
2 Lam C W,James J T,McCluskey R,et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks[J]. Critical Rev Toxicology,2006,36:189.
3 Gass M H,Koziol K K,Windle A H,et al. Four-dimensional spectral tomography of carbonaceous nanocomposites[J]. Nano Lett,2006,6:376.
4 Lacerda L,Bianco A,Prato M,et al. Carbon nanotubes as nanomedicines: From toxicology to pharmacology[J]. Adv Drug Delivery Rev,2006,58:1460.
5 Upadhyayula V K,Deng S,Mitchell M C,et al. Application of carbon nanotube technology for removal of contaminants in drinking water: A review[J]. Sci Total Environ,2009,408:1.
6 Pan B,Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environ Sci Technol,2008,42:9005.
7 Yang K,Xing B. Adsorption of fulvic acid by carbon nanotubes from water[J]. Environ Pollution,2009,157:1095.
8 Rao G P,Lu C,Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review[J]. Sep Purif Technol,2007,58:224.
9 Mauter M S,Elimelech M. Environmental applications of carbon-based nanomaterials[J]. Environ Sci Technol,2008,42:5843.
10 Navarro E,Baun A,Behra R,et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Environ Sci Technol,2008,17:372.
11 Apul O G,Karanfil T. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review[J]. Water Res,2015,68:34.
12 Gimbert L J,Hamon R E,Casey P S,et al.Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation[J]. Environ Chem,2007,4:8.
13 Petersen E J,Huang Q,Weber Jr W J. Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus[J]. Environ Health Perspectives,2008,116:496.
14 Roberts A P,Mount A S,Seda B,et al. In vivo biomodification of li-pid-coated carbon nanotubes by Daphnia magna[J]. Environ Sci Technol,2007,41:3025.
15 Templeton R C,Ferguson P L,Washburn K M,et al. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod[J]. Environ Sci Technol,2006,40:7387.
16 Certini G,Scalenghe R,Ugolini. FC (2006) Soils: Basic concepts and future challenges[M]. UK: Cambridge University Press Cambridge,2006.
17 Li Q,Xie B,Hwang Y S,et al. Kinetics of C60 fullerene dispersion in water enhanced by natural organic matter and sunlight[J]. Environ Sci Technol,2009,43:3574.
18 Lin D,Xing B. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions[J]. Environ Sci Technol,2008,42:5917.
19 Bandyopadhyaya R,Nativ-Roth E,Regev O,et al. Stabilization of individual carbon nanotubes in aqueous solutions[J]. Nano Lett,2002,2:25.
20 O′connell M J,Bachilo S M,Huffman C B,et al. Band gap fluorescence from individual single-walled carbon nanotubes[J]. Science,2002,297:593.
21 Matarredona O,Rhoads H,Li Z,et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS[J]. J Phys Chem B,2003,107:13357.
22 Hyung H,Fortner J D,Hughes J B,et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase[J]. Environ Sci Technol,2007,41:179.
23 Chefetz B,Hatcher P G,Hadar Y,et al. Characterization of dissolved organic matter extracted from composted municipal solid waste[J]. Soil Sci Soc Am J,1998,62:326.
24 Polubesova T,Sherman-Nakache M,Chefetz B. Binding of pyrene to hydrophobic fractions of dissolved organic matter: Effect of polyvalent metal complexation[J]. Environ Sci Technol,2007,41:5389.
25 Chappell M A,George A J,Dontsova K M,et al. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances[J]. Environ Pollut,2009,157:1081.
26 Zhang D,Pan B,Cook R L,et al. Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures[J]. Environ Pollut,2015,196:292.
27 Saleh N B,Pfefferle L D,Elimelech M. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes[J]. Environ Sci Technol,2010,44:2412.
28 Zhou X,Shu L,Zhao H,et al. Suspending multi-walled carbon nanotubes by humic acids from a peat soil[J]. Environ Sci Technol,2012,46:3891.
29 Wilkinson K J,Joz-Roland A,Buffle J. Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters[J]. Limnology Oceanography,1997,42:1714.
30 Gunasekara A S,Simpson M J,Xing B S. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids[J]. Environ Sci Technol,2003,37:852.
31 Pan B,Ghosh S,Xing B S. Dissolved organic matter conformation and its interaction with pyrene as affected by water chemistry and concentration[J]. Environ Sci Technol,2008,42:1594.
32 Wang D,Chu L,Paradelo M,et al. Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition[J]. J Colloid Interface Sci,2011,360:398.
33 Chen K L,Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C 60) nanoparticles in monovalent and divalent electrolyte solutions[J]. J Colloid Interface Sci,2007,309:126.
34 Lin D,Liu N,Yang K,et al. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions[J]. Carbon,2009,47:2875.
35 Wang S G,Liu X W,Gong W X,et al. Adsorption of fulvic acids from aqueous solutions by carbon nanotubes[J]. J Chem Technol Biotechnol,2007,82:698.
36 Yang K,Xing B S. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water[J]. Environ Pollut,2007,145:529.
37 Ferguson P L,Chandler G T,Templeton R C,et al. Influence of sediment-amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates[J]. Environ Sci Technol,2008,42:3879.
38 Zhang S,Shao T,Bekaroglu S S K,et al. The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds[J]. Environ Sci Technol,2009,43:5719.
39 Sheng G D,Shao D D,Ren X M,et al. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes[J]. J Hazard Mater,2010,178:505.
40 Wang X,Liu Y,Tao S,et al. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes[J]. Carbon,2010,48:3721.
41 Oleszczuk P,Pan B,Xing B. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes[J]. Environ Sci Technol,2009,43:9167.
42 Petersen E J,Pinto R A,Landrum P F,et al. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms[J]. Environ Sci Technol,2009,43:4181.
43 Chen J,Chen W,Zhu D. Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: Effects of aqueous solution che-mistry[J]. Environ Sci Technol,2008,42:7225.
44 Wang X,Tao S,Xing B. Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes[J]. Environ Sci Technol,2009,43:6214.
45 Ji L L,Chen W,Zheng S R,et al.Adsorption of sulfonamide antibio-tics to multiwalled carbon nanotubes[J]. Langmuir,2009,25:11608.
46 Chen Q,Saltiel C,Manickavasagam S,et al. Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension[J]. J Colloid Interface Sci,2004,280:91.
47 Jiang L Q,Gao L,Sun J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. J Colloid Interface Sci,2003,260:89.
48 Peng X J,Jia J J,Gong X M,et al. Aqueous stability of oxidized carbon nanotubes and the precipitation by salts[J]. J Hazard Mater,2009,165:1239.
49 Yin Y F,Mays T,McEnaney B. Adsorption of nitrogen in carbon nanotube arrays[J]. Langmuir,1999,15:8714.
50 Pan B,Zhang D,Li H,et al. Increased adsorption of sulfametho-xazole on suspended carbon nanotubes by dissolved humic acid[J]. Environ Sci Technol,2013,47:7722.
51 Jaeger F,Bowe S,Van As H,et al. Evaluation of 1H NMR relaxo-metry for the assessment of pore-size distribution in soil samples[J]. Eur J Soil Sci,2009,60:1052.
52 Schaumann G E,Hobley E,Hurra B J,et al. H-NMR relaxometry to monitor wetting and swelling kinetics in high-organic matter soils[J]. Plant Soil,2005,275:1.
53 Nelson A,Jack K S,Cosgrove T,et al. NMR solvent relaxation in studies of multicomponent polymer adsorption[J]. Langmuir,2002,18:2750.
54 Carrillo-Carrión C,Lucena R,Cárdenas S,et al. Surfactant-coated carbon nanotubes as pseudophases in liquid-liquid extraction[J]. Analyst,2007,132:551.
55 Gotovac S,Hattori Y,Noguchi D,et al. Phenanthrene adsorption from solution on single wall carbon nanotubes[J]. J Phys Chem B,2006,110:16219.
56 Wang X,Lu J,Xing B. Sorption of organic contaminants by carbon nanotubes: Influence of adsorbed organic matter[J]. Environ Sci Technol,2008,42:3207.
[1] 杨鸿睿, 刘洪蕊, 王结良, 祖梅, 徐遨蓝. 大跨度伪装遮障材料技术研究进展[J]. 材料导报, 2025, 39(3): 23110159-6.
[2] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[3] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[4] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[5] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[6] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[7] 吴蒙华, 姜炳春, 肖雨晴, 贾卫平. 功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响[J]. 材料导报, 2025, 39(1): 23110271-6.
[8] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[9] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[10] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[11] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[12] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[13] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed