Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 64-71    https://doi.org/10.11896/j.issn.1005-023X.2017.09.008
  专题栏目:二维材料 |
电弧法制备石墨烯:工艺参数,生长机理,存在的问题与对策*
张达, 戴永年, 梁风
昆明理工大学真空冶金国家工程实验室,昆明 650093
Preparation of Graphene by Arc Discharge Method: Process Conditions, Growth Mechanisms, Inadequacies and Countermeasures
ZHANG Da, DAI Yongnian, LIANG Feng
The National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 1876KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯具有完美的二维结构和优异的光学、力学、热学、电学、化学性能,自发现以来就引起了科研界的广泛关注。在过去的十几年间,石墨烯的制备方法不断涌现,电弧法因具有效率高、安全可靠、产品品质高、环境友好、容易得到掺杂的石墨烯等优点而受到广泛关注。总结了反应气氛、压力、催化剂、磁场等因素对电弧法制备石墨烯的影响。同时,对石墨烯在上述影响因素下的生长机理进行论述,分析了电弧法制备石墨烯存在的问题,并提出了相应的解决途径。最后,对我国石墨烯的研究现状进行总体分析,并展望了电弧法制备石墨烯的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张达
戴永年
梁风
关键词:  石墨烯  电弧法  生长机理    
Abstract: Graphene has perfect two-dimensional structure and a number of excellent optical, mechanical, thermal, electrical, and chemical performances. Therefore, graphene attracts much attention since it was discovered. Many methods have been employed to prepare graphene in the last ten years, arc discharge method has attracted much attentions because of its high efficiency, safety, reliability, preparation of high-quality graphene, environmental friendliness, easy to obtain doped graphene and so on. This paper summarizes the effect factors for graphene preparation by arc discharge method, such as atmosphere, pressure, catalyst, and magnetic field. The growth mechanisms of graphene preparation related to above factors are discussed. The problems of graphene preparation by arc discharge method are analyzed, and corresponding solutions are provided. Finally, the current status of graphene research in China is analyzed, the development trend of graphene preparation by arc discharge method is forecasted.
Key words:  graphene    arc discharge    growth mechanism
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TB321  
  O539  
  O646.9  
基金资助: *云南省级人才培养项目(KKSY201552014); 云南省教育厅面上项目(KKJA201552027); 云南省应用基础研究面上项目(KKS0201652014)
通讯作者:  梁风:男,副教授,主要研究方向为电弧等离子、碳纳米材料及新能源器件 E-mail:liangfeng@kmust.edu.cn   
作者简介:  张达:男,1989年生,硕士研究生,主要研究方向为碳纳米材料在能源中的利用
引用本文:    
张达, 戴永年, 梁风. 电弧法制备石墨烯:工艺参数,生长机理,存在的问题与对策*[J]. CLDB, 2017, 31(9): 64-71.
ZHANG Da, DAI Yongnian, LIANG Feng. Preparation of Graphene by Arc Discharge Method: Process Conditions, Growth Mechanisms, Inadequacies and Countermeasures. Materials Reports, 2017, 31(9): 64-71.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.008  或          https://www.mater-rep.com/CN/Y2017/V31/I9/64
[1] Hansora D P, Shimpi N G, Mishra S.Graphite to graphene via graphene oxide: An overview on synthesis, properties, and applications[J]. JOM,2015,67(12):2855.
[2] Meyer J C, Geim A K, Katsnelson M I, et al.The structure of suspended graphene sheets[J]. Nature,2007, 446(131):60.
[3] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666.
[4] Zhang Y B, Tan Y W, Stormer H L, et al.Experimental observation of the quantum hall effect and Berry's phase in graphene[J]. Nature,2005,438(7065):201.
[5] Novoselov K S, Geim A K, Morozov S V, et al.Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438(7065):197.
[6] Zhao T K, Liu Y N, Li T H, et al.Electrochemical performance of amorphous carbon nanotube as anode materials for lithium ion battery[J]. J Nanosci Nanotechnol,2010,10(6):3873.
[7] Balandin A A, Ghosh S, Bao W, et al.Superior thermal conductivity of single-layer graphene[J]. Nano Lett,2008, 8(3):902.
[8] Lee C, Wei X, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385.
[9] Schadler L S, Giannaris S C, Ajayan P M.Load transfer in carbon nanotube epoxy composites[J]. Appl Phys Lett, 1998,73(26):3842.
[10] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004,427(6974):523.
[11] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature,2006, 442(7100):282.
[12] Yoo E J, Kim J, Hosono E, et al.Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett,2008,8(8):2277.
[13] Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors[J]. J Chem Sci,2008,120(1):9.
[14] Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature,2012,490(7419):192.
[15] Wu Z S, Pei S, Ren W, et al.Field emission of single-layer graphene films prepared by electrophoretic deposition[J]. Adv Mater,2009,21(17):1756.
[16] Wang X, Zhi L J, Müllen K.Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Lett,2008,8(1):323.
[17] Eda G, Fanchini G, Chhowalla M.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nat Nanotechnol,2008,3(5):270.
[18] Brennan R O.The interlayer binding in graphite[J]. Chem Phys,1952,20(1):40.
[19] Edwards R S, Coleman K S.Graphene synthesis: Relationship to applications[J]. Nanoscale,2012,5(1):38.
[20] Jia X T, Jessica C D, Mauricio T, et al.Graphene edges: A review of their fabrication and characterization[J]. Nanoscale,2011,3(1):86.
[21] Kratschmer W, Lamb L D, Fostiropoulos K, et al.Solid C60. A new form of carbon[J]. Nature,1990, 347(6291):354.
[22] Iijima S.Helical microtubules of graphic carbon[J]. Nature,1991,354:56.
[23] Iijima S, Ichihashi T.Single-shell carbon nanotubes of 1-nm diameter[J]. Nature,1993,364(6430):603.
[24] Yamaguchi T, Bandow S, Iijima S.Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods[J]. Chem Phys Lett,2004,389(1-3):181.
[25] Subrahmanyam K S, Panchakarla L S, Govindaraj A, et al.Simple method of preparing graphene flakes by an arc-discharge method[J]. J Phys Chem C,2009,113(11):4257.
[26] Wang Z Y, Li N, Shi Z J, et al.Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air[J]. Nanotechnology,2010,21(17):175602.
[27] Shen B S, Ding J J, Yan X B, et al.Influence of different buffer gases on synthesis of few-layered grapheme by arc discharge method[J]. Appl Surf Sci,2012,258(10):4523.
[28] Song X L, Li B, Nan Y L, et al.Synthesis and characterization of carbon nanostructures by evaporating pure graphite and carbon black in detonation-gas arc discharge[J]. Diam Relat Mater,2015,55:87.
[29] Yu H G, Wang L X, Li J, et al.To promote the nucleation and growth of grapheme in arc discharge process by magnetic field and H2[J]. Mater Lett,2015,159:43.
[30] Song X L, Li B, Zhang P.Raman-assessed structural evolution of as-deposited few-layer graphene by He/H2, arc discharge during rapid-cooling thinning treatment[J]. Carbon,2014,66(3):426.
[31] Ando Y, Zhao X, Ohkohchi M.Production of petal-like graphite sheets by hydrogen arc discharge[J]. Carbon, 1997,35(1):153.
[32] Wu Z S, Ren W C, Gao L B, et al.Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation[J]. ACS Nano,2009,3(2):411.
[33] Wu C X, Dong G F, Guan L H.Production of graphene sheets by a simple helium arc-discharge[J]. Physical E, 2010,42(5):1267.
[34] Kumar R, Singh R K, Dubey P K, et al.Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability[J]. Nanopart Res,2013,15(9):1.
[35] Liang F, Tanaka M, Choi S, et al.Measurement of anode surface temperature in carbon nanomaterial production by arc discharge method[J]. Mater Res Bull,2014,60:158.
[36] Liang F, Shimizu T, Tanaka M. Preparation of polyhedral graphite particles by arc discharge under atmospheric pressure[J]. Jpn J Appl Phys,2013,52(1S):01AK01.
[37] Liang F, Watanabe T, Hayashi K, et al.Liquid exfoliation graphene sheets as catalysts for hybrid sodium-air cells[J]. Mater Lett,2017,187:32.
[38] Liang F, Tanaka M, Choi S, et al.Investigation of carbon nanomaterials growth on anode surface by arc discharge method[J]. J Chem Eng Jpn,2014,68(47):296.
[39] Liang F, Tanaka M, Choi S, et al.Effect of arc behaviour on the temperature fluctuation of carbon electrode in DC arc discharge[J]. J Phys: Conference Series,2014,518(1):562.
[40] Liang F, Shimizu T, Tanaka M, et al.Selective preparation of polyhedral graphite particles and multi-wall carbon nanotubes by a transferred arc under atmospheric pressure[J]. Diam Relat Mater,2012,30:70.
[41] Wu Y P, Wang B, Ma Y F, et al.Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films[J]. Nano Res,2010,3(9):661.
[42] Song X L, Liu Y N, Zhu J W.Synthesis of polyhedral graphite in a forced flow arc discharge[J]. Mater Lett, 2007,61(26):4781.
[43] Cho H, Oh I, Kang J, et al.Catalyst and doping methods for arc graphene[J]. Nanotechnology,2014, 25(25):445601.
[44] Chen Y N, Zhao H B, Sheng L M, et al.Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2 -inert gas mixtures[J]. Chem Phys Lett,2012,538(6):72.
[45] Xue Y Z, Wu B, Bao Q L, et al.Controllable synthesis of doped graphene and its applications[J]. Small,2014, 10(15):2975.
[46] Guan L, Cui L, Lin K, et al.Preparation of few-layer nitrogen-doped graphene nanosheets by DC arc discharge under nitrogen atmosphere of high temperature[J]. Appl Phys A,2010,102(2):289.
[47] Li N, Wang Z Y, Zhao K K, et al.Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method[J]. Carbon,2010,48(1):255.
[48] Panchakarla L S, Subrahmanyam K S, Saha S K, et al.Synthesis, structure and properties of boron and nitrogen doped graphene[J]. Adv Mater,2009,21(46):4726.
[49] Dey S, Govindaraj A, Biswas K, et al.Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples[J]. Chem Phys Lett,2014,595(3):203
[50] Shen B S, Chen J T, Yan X B, et al.Synthesis of fluorine-doped multi-layered graphene sheets by arc discharge[J]. Rsc Adv,2012,2(17):6761.
[51] Farhat S, Scott C D.Review of the arc process modeling for fullerene and nanotube production[J]. J Nanosci Nanotechnol,2006,6(5):1189.
[52] Glerup M, Steinmetz J, Samaille D, et al.Synthesis of N-doped SWNT using the arc-discharge procedure[J]. Chem Phys Lett,2004,387(1):193.
[53] Nair R R, Ren W C, Jalil R, et al.Fluorographene: Two dimensio-nal counterpart of teflon[J]. Small,2010, 6(24):2877.
[54] Liu Y, Huang L P, Wu B, et al.Gram-scale synthesis of graphene sheets by a catalytic arc-discharge method[J]. Small,2013,9(8):1330.
[55] Levchenko I, Volotskova O, Shashurin A, et al.The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes[J]. Carbon,2010,48(15):4570.
[56] Keidar M, Levchenko I, Arbel T, et al.Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge[J]. Appl Phys Lett,2008,92(4):043129.
[57] Li J, Shashurin A, Keidar M.Correlation between formation of the plasma jet and synthesis of graphene in arc discharge[J]. IEEE T Plasma Sci,2011,39(11):2366.
[58] Volotskova O, Levchenko I, Shashurin A, et al.Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas[J]. Nanoscale,2010,2(10):2281.
[59] Keidar M, Shashurin A, Volotskova O, et al.Mechanism of carbon nanostructure synthesis in arc plasma[J]. Phys Plasma,2010,17(5):057101.
[60] Keidar M, Shashurin A, Li J, et al.Arc plasma synthesis of carbon nanostructures: Where is the frontier?[J]. Phys D Appl Phys,2011,44(17):228.
[61] Su Y J, Zhang Y F.Carbon nanomaterials synthesized by arc discharge hot plasma[J]. Carbon,2014,83:90.
[62] Wang X K, Lin X W, Dravid V P, et al.Carbon nanotubes synthesized in a hydrogen arc discharge[J]. Appl Phys Lett,1995,66(18):2430.
[63] Cui S, Scharff P, Siegmund C, et al.Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N2 atmosphere[J]. Carbon,2004,42(5-6):931.
[64] Gamaly E G, Ebbesen T W.Mechanism of carbon nanotube formation in the arc discharge[J]. Phys Rev B,1995, 52(3):2083.
[65] Gupta V.Graphene as intermediate phase in fullerene and carbon nanotube growth: A Young-Laplace surface-tension mode[J]. Phys Lett,2010,97(18):1819101.
[66] Beilis I I, Keidar M, Boxman R L, et al.Interelectrode plasma parameters and plasma deposition in a hot refractory anode vacuum arc[J]. Phys Plasma,2000,7(7):3068.
[67] Keidar M, Levchenko I, Arbel T, et al.Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge[J]. J Appl Phys,2008,103(9):094318.
[68] Keidar M, Waas A M, Raitses Y, et al.Modeling of the anodic arc discharge and conditions for single-wall carbon nanotube growth[J]. J Nanosci Nanotechnol,2006,6(9):1309.
[69] Qin B, Zhang T F, Chen H H, et al.The growth mechanism of few-layer graphene in the arc discharge process[J]. Carbon,2016,102:494.
[70] Saito Y, Yoshikawa T, Inagaki M, et al.Growth and structure of graphitic tubules and polyhedral particles in arc-discharge[J]. Chem Phys Lett,1993,204(3-4):277.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[5] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[6] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[7] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[8] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[9] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[10] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[11] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[12] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[13] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[14] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[15] 王云鹏, 刘宇宁, 王同波, 张嘉凝, 莫永达, 娄花芬. 铜箔衬底对化学气相沉积法制备石墨烯的影响[J]. 材料导报, 2024, 38(13): 22110222-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed