Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 72-76    https://doi.org/10.11896/j.issn.1005-023X.2017.09.009
  专题栏目:二维材料 |
超声波辅助二元溶剂剥离制备石墨烯*
祁帅, 黄国强
天津大学化工学院,天津 300072
Preparation of Graphene by Ultrasonic-assisted Exfoliation of Graphite in Binary Solvents
QI Shuai, HUANG Guoqiang
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072
下载:  全 文 ( PDF ) ( 1825KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 探索了N,N-二甲基甲酰胺和正丁醇、N,N-二甲基甲酰胺和乙醇两种二元体系剥离制备石墨烯的效果,得到了最佳剥离配比,提高了石墨烯分散液的浓度以及稳定性,并引入氢键的相关知识解释了该现象,指出了Hansen溶解度理论并不适合本研究所选的二元体系。通过原子力显微镜、 透射电子显微镜、 拉曼光谱等对样品的形貌和结构进行了表征,并通过石墨烯分散液的吸光度回归得到了其吸光度系数。经6 000 r/min高速离心分离后,所得石墨烯分散液大部分为单层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祁帅
黄国强
关键词:  石墨烯  超声波  二元溶剂  剥离    
Abstract: This paper reports two binary-solvent systems, i.e. dimethylformamide/n-butylalcohol system and dimethylformamide/ethanol system that facilitate higher concentration and improved stability of graphene dispersion. Hydrogen bond was introduced to explain the exfoliation mechanism and stabilizing mechanism. At the same time, it was found that Hansen solubility theory was not suitable for the chosen binary solvent systems. Furthermore, the topography and nanostructure of graphene were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectroscopy. The absorbance coefficient of graphene dispersion was obtained by UV-Vis spectra. Finally, a graphene dispersion that predominantly containing single-layer graphene was obtained after 6 000 r/min centrifugation.
Key words:  graphene    ultrasonic    binary solvents    exfoliation
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TQ127.1  
基金资助: *国家自然科学基金(21676197)
通讯作者:  黄国强:男,1973年生,博士,副教授,主要从事多晶硅精馏领域的研究、开发与工程设计以及石墨烯制备工艺研究 E-mail: hgq@tju.edu.cn   
作者简介:  祁帅:男,1991年生,硕士研究生,主要从事剥离制备石墨烯工艺的研究 E-mail: qishuai@tju.edu.cn
引用本文:    
祁帅, 黄国强. 超声波辅助二元溶剂剥离制备石墨烯*[J]. CLDB, 2017, 31(9): 72-76.
QI Shuai, HUANG Guoqiang. Preparation of Graphene by Ultrasonic-assisted Exfoliation of Graphite in Binary Solvents. Materials Reports, 2017, 31(9): 72-76.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.009  或          https://www.mater-rep.com/CN/Y2017/V31/I9/72
[1] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
[2] He Dafang, Wu Jian, Liu Zhanjian, et al.Recent advances in preparation of graphene for applications[J]. J Chem Ind Eng(China), 2015, 66(8):2888 (in Chinese).何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报,2015,66(8):2888.
[3] Bolotin K I, Sikes K J, et al.Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun,2008,146(9-10):351.
[4] Balandin A A, Ghosh S, Bao W, et al.Superior thermal conductivity of single-layer graphene[J]. Nano Lett,2008,8(3):902.
[5] Lee C, Wei X, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
[6] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523.
[7] Stoller M D, Park S, Zhu Y, et al.Graphene-based ultracapacitors[J]. Nano Lett,2008,8(10):3498.
[8] Eda G, Chhowalla M.Graphene-based composite thin films for electronics[J]. Nano Letters,2009,9(2):814.
[9] Hernandez Y,et al.High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nat Nanotech-nol,2008,3(9):563.
[10] Matsumoto M, et al.Ultrahigh-throughput exfo-liation of graphite into pristine ‘single-layer' graphene using microwaves and molecularly engineered ionic liquids[J]. Nat Chem,2015,7(9):730.
[11] Raccichini R, Balducci A, et al. Method of producing graphene by exfoliation of graphite: WO, 2015/131933[P]. 2015-09-11.
[12] Niazi M B K. Effect of concentration of surfactant on the exfoliation of graphite to graphene in aqueous media[J]. Nanomater Nanotechnol,2016,6(14):1.
[13] Cui J, Song Z, Xin L, et al.Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer[J]. Carbon,2016,99:249.
[14] Chia J S Y, Tan M T T, et al. A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application[J]. Chem Eng J,2014,249:270.
[15] Chen J, et al.A binary solvent system for improved liquid phase exfoliation of pristine graphene materials[J]. Carbon,2015,94:405.
[16] Posudievsky O Y, Khazieieva O A, et al.High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite[J]. J Nanoparticle Res,2013,15(11):1.
[17] Hernandez Y, Lotya M, Rickard D, et al.Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J]. Langmuir ACS J Surf Colloids, 2010, 26(5):3208.
[18] Zhou K G, Mao N N, Wang H X, et al.A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angew Chem,2011,50(46):10839.
[19] Hansen C M.Hansen solubility parameters: A user's handbook [M]. Boca Raton: CRC Press, 2007:323.
[20] 王庆文, 杨玉桓, 高鸿宾. 有机化学中的氢键问题 [M]. 天津:天津大学出版社, 1993:75.
[21] Ferrari A C.Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun,2007,143(1-2):47.
[22] Ferrari A C, Meyer J C, Scardaci V, et al.Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett,2006,97(18):13831.
[23] Stengl V, Henych J, Ecorchard P, et al.A green method of graphene preparation in an alkaline environment[J]. Ultrasonics Sonochem,2014,24:65.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[5] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[6] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[7] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[8] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[9] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[10] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[11] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[12] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[13] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[14] 姚福林, 褚泽南, 景冲, 赵越, 魏源. 热塑性复合材料大长宽比接头超声波焊接研究进展[J]. 材料导报, 2024, 38(16): 22110069-8.
[15] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed