Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 77-80    https://doi.org/10.11896/j.issn.1005-023X.2017.09.010
  专题栏目:二维材料 |
类石墨相氮化碳二维纳米片的制备及可见光催化性能研究*
阎鑫, 惠小艳, 闫从祥, 艾涛, 苏兴华, 王振军, 孙国栋, 赵鹏
长安大学材料科学与工程学院,西安 710064
Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets
YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua
WANG Zhenjun, SUN Guodong, ZHAO Peng(School of Materials Science and Engineering, Chang'an University, Xi'an 710064
下载:  全 文 ( PDF ) ( 1397KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以三聚氰胺为原料制备类石墨相氮化碳(g-C3N4),采用球磨与超声联用技术制备g-C3N4二维纳米片。 利用X 射线衍射光谱(XRD)、紫外-可见漫反射(UV-Vis)光谱、扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)、荧光(PL)光谱等分析手段对制备的催化剂进行了表征。 结果表明: g-C3N4二维纳米片具有与体相g-C3N4相同的晶体结构,片层结构仅有5个原子层厚。g-C3N4二维纳米片增加了对可见光的吸收,提高了光生电子-空穴对的分离效率。以染料罗丹明B的降解反应研究了g-C3N4二维纳米片在可见光下的催化性能。 结果表明,球磨超声1 h后制备的g-C3N4二维纳米片表现出最佳的光催化性能, 150 min 内对罗丹明B的降解率高达94%,是体相g-C3N4的2 倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  类石墨相氮化碳  纳米片  液相剥离  可见光催化    
Abstract: The graphite-like carbon nitride (g-C3N4) two-dimension (2D) nanosheet were successfully prepared by a ball-mi-lling and ultrasound process using melamine as raw material. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), atomic force microscope (AFM) and photoluminescence spectrum (PL). The XRD results showed that g-C3N4 2D nanosheet had the same crystal phase as g-C3N4. The exfoliated products were comprised of only 5 C-N layers. The g-C3N4 2D nanosheet improved the absorption of visible light and accelerated the separation of photo-generated electron-hole pairs. The photocatalytic performance of the samples was evaluated by photocatalytic oxidation of rhodamine B (RhB) under visible light irradiation. The results show that g-C3N4 2D nanosheet exhibited a much higher degradation rate which is 2 times as high as that of pure g-C3N4.
Key words:  graphite-like carbon nitride    nanosheet    liquid exfoliation    visible photocatalysis
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TB321  
  O649.1  
基金资助: *国家自然科学基金(51402024); 中央高校基础研究基金(310831153504); 陕西省自然科学基金(2015JM2070; 2015JQ5149)
作者简介:  阎鑫:男,1976年生,博士,副教授,主要研究方向为低维纳米材料的制备 E-mail:xinyan@chd.edu.cn
引用本文:    
阎鑫, 惠小艳, 闫从祥, 艾涛, 苏兴华, 王振军, 孙国栋, 赵鹏. 类石墨相氮化碳二维纳米片的制备及可见光催化性能研究*[J]. CLDB, 2017, 31(9): 77-80.
YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets. Materials Reports, 2017, 31(9): 77-80.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.010  或          https://www.mater-rep.com/CN/Y2017/V31/I9/77
[1] Hu Zhongliang, Jiang Haiyun, Zhao Xuehui, et al.The methods, characteristics and basic mechanisms of preparing graphene[J]. Mater Rev: Rev,2014,28(6):38 (in Chinese).胡忠良,蒋海云,赵学辉, 等. 石墨烯制备的方法、特性及基本原理[J]. 材料导报:综述篇,2014,28(6):38.
[2] Kian Ping Loh, Qiaoliang Bao, Goki Eda, et al.Graphene oxide as a chemically tunable platform for optical applications[J]. Nat Chem,2010, 2:1015.
[3] Liu Yangyang, Chen Xiaodong, Wang Xianying, et al.Research progress of two dimensional transition metal dichalcogenides[J]. Mater Rev: Rev,2014,28(2):23(in Chinese).刘洋洋,陈晓冬,王现英, 等. 类石墨烯过渡金属二硫化物的研究进展[J]. 材料导报:综述篇,2014, 28(2):23.
[4] Lu S B, Miao L L, Guo Z N, et al.Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material[J]. Opt Express,2015,23:11183.
[5] Wang X,Maeda K,Thomas A,et al.A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater,2009,8:76.
[6] Liu J, Liu Y, Liu N Y, et al.Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Scien-ce,2015,347(6225):970.
[7] Gui Mingsheng, Wang Pengfei, Yuan Dong, et al.Synthesis and visible-light photocatalytic activity of Bi2WO6 /g-C3N4 composite photocatalysts[J]. Chin J Inorg Chem,2013,29(10):2057 (in Chinese).桂明生,王鹏飞,袁东,等. Bi2WO6/g-C3N4复合型催化剂的制备及其可见光光催化性能[J].无机化学学报,2013,29(10):2057.
[8] Zhang Fen, Chai Bo, Liao Xiang, et al.Preparation and visible light photocatalytic properties of RGO/C3N4 composites[J]. Chin J Inorg Chem,2014,30(4):821(in Chinese).张芬,柴波,廖翔, 等. RGO/C3N4复合材料的制备及可见光催化性能[J]. 无机化学学报,2014,30(4):821.
[9] Zhao Xueguo, Huang Liqun, Li Jiake, et al.Preparation and photocatalytic performance of ITO/g-C3N4 heterojunction photocatalysts for hydrogen evolution from water[J]. Chin J Inorg Chem,2015,31(12):2342(in Chinese).赵学国,黄丽群,李家科, 等. ITO/g-C3N4异质结催化剂的制备及其光解水产氢性能[J]. 无机化学学报,2015,31(12):2342.
[10] Jin Ruirui, You Jiguang, Zhang Qian, et al.Preparation of Fe-doped graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Acta Phys-Chim Sin,2014,30(9):1706 (in Chinese).金瑞瑞,游继光,张倩,等. Fe掺杂g-C3N4的制备及其可见光催化性能[J].物理化学学报,2014,30(9):1706.
[11] Zhang Jian, Wang Yanjuan, Hu Shaozheng.Effect of K+ doping on the band structure and photocatalytic performance of graphitic carbon nitride photocatalysts[J].Acta Phys-Chim Sin,2015,31(1):159(in Chinese).张健,王彦娟,胡绍争.钾离子掺杂对石墨型氮化碳光催化剂能带结构及光催化性能的影响[J]. 物理化学学报,2015,31(1):159.
[12] Zhu J, Xiao P, Li H, et al.Graphitic carbon nitride:Synthesis, properties, and applications in catalysis[J]. ACS Appl Mater Interface, 2014,6:16449.
[13] Niu P, Zhang L, Liu G, et al.Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Adv Funct Mater,2012,22:4763.
[14] Xu J, Zhang L W, Shi R, et al.Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. J Mater Chem A,2013,1:14766.
[15] Zhang X, Xie X, Wang H, et al.Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. J Am Chem Soc, 2013,135:18.
[16] Yang S, Gong Y, Zhang J, et al.Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Adv Mater,2013,25:2452.
[17] Lin Q Y, Li L, et al.Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities[J].Appl Catal B,2015,163:135.
[18] Liu J, Zhang T, Wang Z, et al.Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity[J]. J Mater Chem,2011,21:14398.
[19] Barman S, Sadhukhan M.Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media[J]. J Mater Chem,2012,22(41):21832.
[1] 刘恩序, 李俊杰, 刘阳, 杨超然, 周娜, 李俊峰, 罗军, 王文武. 环栅晶体管制备中SiGe选择性刻蚀技术综述[J]. 材料导报, 2024, 38(9): 22110004-7.
[2] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[3] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[4] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[5] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[6] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[7] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[8] 陶莹, 马壮, 李思南, 曲涛, 李玲玲. 二维沸石纳米片的合成与应用[J]. 材料导报, 2023, 37(17): 22010235-9.
[9] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[10] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[11] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[12] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[13] 白央, 徐成成, 赵洋, 张荣, 刘清亭, 付旭东, 胡圣飞. 超临界流体制备氮化硼纳米片的研究进展[J]. 材料导报, 2021, 35(7): 7071-7076.
[14] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[15] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed