Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 50-56    https://doi.org/10.11896/j.issn.1005-023X.2017.09.006
  专题栏目:二维材料 |
一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*
张耀君, 余淼, 张力, 张懿鑫, 康乐
西安建筑科技大学材料与矿资学院,西安 710055
Synthesis of a Novel Graphene Fly-ash-based Geopolymer Composite and Its Photocatalytic Application
ZHANG Yaojun, YU Miao, ZHANG Li, ZHANG Yixin, KANG Le
College of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an 710055
下载:  全 文 ( PDF ) ( 2326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二维石墨烯优异的理论电子迁移率,为石墨烯与粉煤灰地质聚合物的复合以及半导体光生电子的传输提供了理论依据。本工作首次报道了石墨烯-粉煤灰基地质聚合物复合光催化材料的制备,并将其应用于光催化染料降解的探索性研究。XRD、FESEM、XPS及FT-IR结果表明:粉煤灰颗粒与碱性激发剂反应,生成Si-O-Si(Al)无定形网络结构的石墨烯-粉煤灰基地质聚合物复合材料,Co2+掺杂的Fe2O3以无定形态均匀地分布于石墨烯-粉煤灰基地质聚合物复合材料表面。Co2+-10Fe2O3-GAFG复合材料对碱性品蓝染料展现出最高的光催化降解活性,归因于Co2+掺杂提供给Fe2O3半导体的施主能级,石墨烯对Fe2O3光生电子的快速传输,以及羟基自由基(·OH)对染料分子氧化降解的协同作用。该光催化降解反应符合二级反应动力学。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张耀君
余淼
张力
张懿鑫
康乐
关键词:  石墨烯-粉煤灰地质聚合物复合材料  光催化  羟基自由基  染料降解    
Abstract: Two-dimensional graphene with excellent theoretical electron mobility provides a theoretical foundation for the composite of graphene and fly ash geopolymer as well as the photo-generated electron transmission of semiconductor. The graphene fly-ash-based geopolymer composite was firstly synthesized and applied as photocatalyst for degradation of dye. XRD, FESEM, XPS and FT-IR results showed that the spherical fly ash particles reacted with alkali-activated agent to generate the graphene alkali-activated fly-ash-based geopolymer (GAFG) which was composed of Si-O-Si (Al) amorphous net structure, and the lamellate graphene was wrapped inside. The fact that the Co-10Fe2O3-GAFG sample displayed the highest photocatalytic activity for degradation of basic blue dye was ascribed to the synergistic effect of: the donor level of Fe2O3 semiconductor induced by Co2+ doping, the rapid photoelectron transfer from Fe2O3 semiconductor to graphene, and the oxidative degradation of dye molecules by hydroxyl radicals. The photocatalytic degradation reaction coincides with the second-order reaction kinetics.
Key words:  graphene fly-ash-based geopolymer composite    photocatalysis    hydroxyl radical    dye degradation
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TB33  
基金资助: *国家自然科学基金(21676209; 21346011); 陕西省教育厅重点科研项目(16JS055)
作者简介:  张耀君:男,1959年生,博士,教授,博士研究生导师,主要从事固体废弃物资源化利用、新能源材料和纳米材料等研究 E-mail:zhangyaojun@xauat.edu.cn
引用本文:    
张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
ZHANG Yaojun, YU Miao, ZHANG Li, ZHANG Yixin, KANG Le. Synthesis of a Novel Graphene Fly-ash-based Geopolymer Composite and Its Photocatalytic Application. Materials Reports, 2017, 31(9): 50-56.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.006  或          https://www.mater-rep.com/CN/Y2017/V31/I9/50
[1] 付鹏艳. “十三五”粉煤灰怎么走[J]. 商品混凝土,2016(6):31.
[2] Cao J, Fang Y, Fan R D, et al.Research progress of extracting alumina and silica from sly ash[J]. Inorg Chem Ind, 2015,47(8):10 (in Chinese).曹君,方莹,范仁东,等. 粉煤灰提取氧化铝联产二氧化硅的研究进展[J].无机盐工业,2015,47(8):10.
[3] Sun S J, Liu X M.Recycling utilization of fly ash in china: Situations, problems and countermeasures[J]. Fly Ash Compr Utiliz,2015(3):45.孙淑静, 刘学敏. 我国粉煤灰资源化利用现状、问题及对策分析[J]. 粉煤灰综合利用,2015(3):45.
[4] Gunasekara C, Law D W, Setunge S, et al.Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers[J].Constr Build Mater,2015,95:592.
[5] Ryu G S, Lee Y B, Koh K T, et al.The mechanical properties of fly ash based geopolymer concrete with alkaline activators[J]. Constr Build Mater,2013,47:409.
[6] Bakharev T.Geopolymeric materials prepared using class F fly ash and elevated temperature curing[J]. Cem Concr Res,2005,35:1224.
[7] Law D W, Adam A A, Molyneaux T K, et al.Long term durability properties of class F fly ash geopolymer concrete[J]. Mater Struct,2015,48:721.
[8] Chindaprasirt P, Rattanasak U, Taebuanhuad S.Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer[J]. Mater Struct,2013,46:375.
[9] Temuujin J, Minjigmaa A, Lee M, et al.Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions[J]. Cem Concr Compos,2011,33:1086.
[10] Chindaprasirt P, Chalee W.Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site[J]. Constr Build Mater,2014,63:303.
[11] Roy D M.Alkali activated cement opportunities and challenges[J]. Cem Concr Res, 1999, 29:249.
[12] Rashad A M.Alkali-activated metakaolin: A short guide for civil engineer—An overview[J]. Constr Build Mater,2013,41:751.
[13] Zhang Y J, Zhang M Y, Kang L, et al.Research progresses of new type alkali-activated cementitious material catalyst[J]. J Inorg Mater,2016, 31(3):225.张耀君, 杨梦阳, 康乐, 等. 一类新型碱激发胶凝材料催化剂的研究进展[J]. 无机材料学报,2016,31(3):225.
[14] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
[15] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of grapheme[J].Rev Mod Phys,2009,81:109.
[16] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282.
[17] Lee C G, Wei X D, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008, 321(5887):385.
[18] Novoselov K S, Jiang Z, Zhang Y, et al.Room-temperature quantum hall effect in graphene[J]. Science,2007,315(5817):1379.
[19] Wang Y, Huang Y, Song Y, et al.Room-temperature ferromagne-tism of graphene[J]. Nano Lett,2009,9(1):220.
[20] Ivanovskii A L.Graphene-based and graphene-like materials[J]. Russ Chem Rev,2012,81(7):571.
[21] Vasilios G, Michal O, Athanasios B B, et al.Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications[J]. Chem Rev,2012,112:6156.
[22] Fujii H, Ohtaki M, Eguchi K, et al.Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix[J]. J Mol Catal A: Chem,1998,129(1):61.
[23] Wieczorek-Ciurowa K, Kozak A J.The thermal decomposition of Fe(NO3)3·9H2O[J].J Therm Anal Calorim,1999,58:647.
[24] 王华,张强,宋存义. 莫来石在粉煤灰碱性溶液中的反应行为[J]. 粉煤灰综合利用,2001(5):24.
[25] Zhang Y J, Zhao Y L, Li H H, et al.Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag[J]. J Mater Sci,2008,43:7141.
[26] Guivar J A R, et al. Vacancy ordered α-Fe2O3 nanoparticles functionalized with nanohydr-oxyapatite: XRD, FTIR, TEM, XPS and Mössbauer studies[J]. Appl Surf Sci,2016,389:721.
[27] Descostes M, Mercier F, Thromat N, et al.Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium[J]. Appl Surf Sci,2000,165:288.
[28] Jing H, Song X, Ren S, et al.ZIF-67 derived nanostructures of Co/CoO and Co@N-doped graphitic carbon as counter electrode for highly efficient dye-sensitized solar cells[J]. Electrochim Acta,2016,213:252.
[29] Venkatesan M, Fitzgerald C B, et al.Anisotropic ferromagnetism in substituted zinc oxide[J]. Phys Rev Lett,2004,93:177206.
[30] Garbowski E, Guenin M, Marion M C, et al.Catalytic properties and surface states of cobalt-containing oxidation catalysts[J]. Appl Catal,1990, 64:209.
[31] Palomo A, Grutzeck M W, Blanco M T.Alkali-activated fly ashes—A cement for the future[J]. Cem Concr Res,1999,29:1323.
[32] Timakul P, Rattanaprasit W, Aungkavattana P.Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition[J]. Ceram Int,2016,42:6288.
[33] Komnitsas K A.Potential of geopolymer technology towards green buildings and sustainable cities[J]. Procedia Eng,2011,21:1023.
[34] Ho Y S, Mckay G.Pseudo-second order model for sorption processes[J].Proc Biochem,1999,34:451.
[35] Damme H V, Hall W K.Photoassisted decomposition of water at the gas-solid interface on titanium dioxide[J].J Am Chem Soc,1979,101:4373.
[1] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[2] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[3] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[4] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[5] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[6] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[7] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[8] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[9] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[10] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[11] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[12] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[13] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[14] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[15] 梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed