Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 130-135    https://doi.org/10.11896/j.issn.1005-023X.2017.06.026
  材料研究 |
天然浮石混凝土孔溶液结冰规律的研究
王萧萧1, 申向东2, 王海龙2, 杜聪1
1 内蒙古工业大学土木工程学院, 呼和浩特 010051;
2 内蒙古农业大学水利与土木建筑工程学院, 呼和浩特 010018
Research on Icing Law of Pore Solution in Natural Pumice Concrete
WANG Xiaoxiao1, SHEN Xiangdong2, WANG Hailong2, DU Cong1
1 College of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051;
2 College of Water
Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018
下载:  全 文 ( PDF ) ( 1471KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以内蒙古天然浮石作为粗骨料,通过冻融核磁共振技术模拟冻融循环温度变化过程,并测得天然浮石混凝土在冷冻和融化过程中孔溶液信号量、结冰速率、T2谱和孔径分布的变化规律,结果表明:用冷冻过程中的含冰量来评价孔溶液结冰引起的静水压比较符合实际情况;天然浮石混凝土发生冻害的温度主要是-15 ℃以上。探讨了天然浮石混凝土孔溶液的结冰规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王萧萧
申向东
王海龙
杜聪
关键词:  天然浮石混凝土  冻融核磁共振  孔隙结冰规律    
Abstract: The freezing and thawing temperature cycle of coarse aggregate, which was made from the natural pumice in Inner Mongolia, was simulated by freezing-thawing nuclear magnetic resonance technology. During the freezing and thawing process, the various discipline of pore solution semaphore, frozen rate, T2 spectrum and pore size distribution were obtained. The results showed that it was reasonable to evaluate the hydrostatic pressure of pore solution with the amount of ice in freezing process. The most se-rious damage of natural pumice concrete occurred at minus 15 centigrade. Other freezing behaviors of the natural pumice concrete solution were also obtained.
Key words:  natural pumice concrete    freezing-thawing nuclear magnetic resonance    pore icing law
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51609119;51569021;51369023;51669026);内蒙古自治区自然科学基金(2015MS0564;2016BS0503);教育部创新团队发展计划(IRT13069);内蒙古工业大学科学研究项目(ZD201609)
通讯作者:  申向东:男,1955年生,教授,博士研究生导师,主要研究方向为新型建筑材料,E-mail:ndsxd@163.com   
作者简介:  王萧萧:女,1987年生,博士,讲师,主要研究方向为混凝土耐久性,E-mail:wxiaoxiao.good@163.com
引用本文:    
王萧萧, 申向东, 王海龙, 杜聪. 天然浮石混凝土孔溶液结冰规律的研究[J]. 《材料导报》期刊社, 2017, 31(6): 130-135.
WANG Xiaoxiao, SHEN Xiangdong, WANG Hailong, DU Cong. Research on Icing Law of Pore Solution in Natural Pumice Concrete. Materials Reports, 2017, 31(6): 130-135.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.026  或          https://www.mater-rep.com/CN/Y2017/V31/I6/130
1 Hossain K M A. Potential use of volcanic pumice as a construction material [J]. J Mater Civil Eng,2004,16(6):573.
2 Hossain K M A. Properties of volcanic scoria based lightweight concrete[J]. Mag Concr Res,2004,56(2):111.
3 Mrema A, Mboya H. Feasibility of lightweight aggregate concrete for structural and non-structural works in Tanzania[C]//Reserarch and Applications in Structural Engineering, Mechanics and Computation- Zingoni (Ed). Cape Town,2013:1769.
4 Yasar E, Atis C D, Kilic A, et al. Strength properties of lightweight concrete made with basaltic volcanic pumice and fly ash[J]. Mater Lett,2003,57(15):2267.
5 Hossain K M A. Properties of volcanic pumice based cement and lightweight concrete[J]. Cem Concr Res,2004,34(2):283.
6 Hossain K M A. Fire durability of lightweight volcanic pumice concrete with special reference to thin walled filled sections [J]. Durability Build Mater Components,1999,8(1-4):149.
7 Kuznetsova E, Motenko R G, Danielsen S W. Thermal properties of volcanic ash and pumice [C]//Mineral Deposit Research for a High Tech World 12th Biennial Meeting.Uppsala,2013:155.
8 Onouea K, Tamaib H, Susenoc H. Shock-absorbing capability of lightweight concrete utilizing volcanic pumice aggregate [J]. Constr Build Mater,2015,83:261.
9 Hariyadia H, Tamaib H. Enhancing the performance of porous concrete by utilizing the pumice aggregate[J]. Procedia Eng,2015,125:732.
10 Neville A M. Properties of concrete [M]. England: Longman Group Limited,1995:29.
11 Uygunolu T, Topu L B. Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature[J].Constr Build Mater,2009,23(9):3063.
12 Wen Jiabao. Study on freeze-thaw damage for concrete based on analysis of the pore structure[D]. Harbin: Harbin Engineering University,2013(in Chinese).
温家宝.基于孔结构分析的混凝土冻融损伤研究[D].哈尔滨:哈尔滨工程大学,2013.
13 Yu L, Zhang J, Zhang J X, et al.Quantitative relation model between macro performance and pore structure of cement concrete[J].J Harbin Engineering University,2015,36(11):1459(in Chinese).
于蕾,张君,张金喜,等.水泥混凝土宏观性能与孔结构量化关系模型[J].哈尔滨工程大学学报,2015,36(11):1459.
14 廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996:58.
15 Powers T C. The specific surface area of hydrated cement obtained from permeability data[J]. Matériaux et Constr,1979,12(3):159.
16 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999:36.
17 Cai H. Prediction model of frost resistance and durability of concrete [D].Beijing: Tsinghua University,1998(in Chinese).
蔡昊.混凝土抗冻耐久性预测模型[D].北京:清华大学,1998.
18 张誉,蒋利学,张伟平,等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003:92.
19 Zhang S P, Deng M, Wu J H, et al.Effect of pore structure on the frost resistance of concrete[J].J Wuhan University of Technology,2008,30(6):56(in Chinese).
张士萍,邓敏,吴建华,等.孔结构对混凝土抗冻性的影响[J].武汉理工大学学院,2008,30(6):56.
20 Fagerlund G. Determination of pore-size distribution from freezing-point depression[J].Matériaux et Constr,1973,6(33):215.
21 Powers T C. Studies of the physical properties of hardende portland cement past[J]. J Am Ceram Soc,1958,41(1):1.
22 Jacobsen S, Sellevold E J, Matala S. Frost durability of high strength concrete: Effect of internal cracking on ice formation[J]. Cem Concr Res,1996,26(6):919.
23 Monteiro P J M, Rashed A I. Ice in cement paste as analyzed in the low-temperature scanning electron microscope[J]. Cem Concr Res,1989,19:306.
24 Wang K, Monteiro P J M, Rubinsky B, et al. Microscopic study of ice propagation in concrete[J]. ACI Mater J,1996,93:370.
25 Olsen M P J. Mathematical modeling of the freezing process of concrete and aggregates[J]. Cem Concr Res,1984,14:113.
26 Duan A. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process[D].Beijing: Tsinghua University,2009(in Chinese).
段安.受冻融混凝土本构关系研究和冻融过程数值模拟[D].北京:清华大学,2009.
27 Zheng S S, Wang F, Fu X L, et al. Experimental study on freeze-thaw damage model for concrete structures and membersbased on material[J]. J Vibration Shock,2016,35(3):176(in Chinese).
郑山锁,汪锋,付晓亮,等.基于材性的混凝土结构及构件冻融损伤模型试验研究[J].振动与冲击,2016,35(3):176.
28 Li J L. Experiment study on deterioration mechanism of rock under the conditions of freezing-thawing cycles in cold regions based on NMR technology[D].Nanjing: Central South University,2012(in Chinese).
李杰林.基于核磁共振技术的寒区岩石冻融损伤机理试验研究[D].南京:中南大学,2012.
29 Xiao L Z. Recent development on nuclear magnetic resonance in rock samples and its applications [J].Well Logging Technol,1996,20(1):27(in Chinese).
肖立志.岩石核磁共振研究进展及其应用[J].测井技术,1996,20(1):27.
30 Wang H Q, Fu C D, Jing L J, et al. Application of NMR imaging technology in rock petrophysics experiment[J].Well Logging Tech-nol,2005,29(2):95(in Chinese).
王洪强,付晨东,井连江,等.核磁共振成像技术在岩石物理实验中的应用[J].测井技术,2005,29(2):95.
31 Hassanein R, Meyer H O, Carminati A, et al. Investigation of water imbibition in porous stone by thermal neutron radiography [J]. J Phys D,2006,39(19):4284.
32 Powers T C, Willis T F. The air requirement of frost-resistance concrete[J]. Highway Res Board Proc,1950,29:184.
33 Wang X X, Shen X D, Wang H L, et al. Nuclear magnetic resonance analysis of concrete-lined channel freeze-thaw damage[J]. J Ceram Soc Jpn,2015,123(1):43.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[3] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[10] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[11] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[12] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[13] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[14] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[15] 徐俊, 康爱红, 吴正光, 龚泳帆, 寇长江, 吴帮伟, 张垚, 肖鹏. 高性能再生微粉基地聚合物注浆料的活化制备及性能研究[J]. 材料导报, 2024, 38(22): 24060235-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed