Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 130-135    https://doi.org/10.11896/j.issn.1005-023X.2017.03.021
  碳纳米材料 |
借助聚合物实现石墨烯转移的技术进展*
张自元, 门传玲, 曹军, 李振鹏, 赵明杰
上海理工大学能源与动力工程学院,上海 200093;
Technological Advances in Realizing Graphene Transfer with the Help of Polymers
ZHANG Ziyuan, MEN Chuanling, CAO Jun, LI Zhenpeng, ZHAO Mingjie
School of Power and Engineering, University of Shanghai for Science and Technology, Shanghai 200093;
下载:  全 文 ( PDF ) ( 1399KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高质量、低成本、绿色制备石墨烯及其高效转移技术是促进石墨烯应用和行业发展的关键。目前制备大面积高质量石墨烯的主流方法是基于金属表面催化生长的化学气相沉积法。薄膜转移技术作为连接石墨烯制备和应用的重要桥梁,在实现石墨烯产业化应用中发挥着重要作用。当前石墨烯薄膜的转移技术主要是利用各种聚合物作衬底或支撑材料的直接和间接转移技术。分类介绍了借助单一聚合物转移、复合结构聚合物转移和其他聚合物转移等石墨烯薄膜的转移方法,并对各自的特点进行了分析和总结,比较了各自的优劣势,给出了对应的适用场合。最后展望了石墨烯转移技术的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张自元
门传玲
曹军
李振鹏
赵明杰
关键词:  石墨烯薄膜  化学气相沉积  聚合物  转移技术    
Abstract: High quality, low-cost, green synthesis and high efficiency transfer techniques are significantly important with the development for promoting the application of graphene and the whole graphene related industries. At present, chemical vapor deposition based on catalytic growth on metal surface has become a main method in synthesis of high quality and large area graphene. Film transfer techniques as a bridge connect synthesis and its application is playing an important role in the process of realizing industrialization application of graphene. Nowadays, graphene film transfer techniques are various direct and indirect transfer methods mainly used kinds of polymers as substrates or supporting materials. We introduced graphene transfer methods in single polymer transfer method, polymer of composite structure transfer method and other graphene film transfer methods. Also we made analysis and summary according to the character of each transfer method. The requirements and advantages of each class are described and compared. At the end, the future of graphene transfer technique is briefly introduced.
Key words:  graphene film    chemical vapor deposition    polymer    transfer techniques
出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  O484  
  TB33  
基金资助: *上海市自然科学基金(13ZR1428200);上海理工大学国家级项目培育基金(14XPM06)
作者简介:  张自元:男,1989年生,硕士研究生,主要从事石墨烯材料的制备及应用方面的研究 E-mail:2136441094@qq.com 门传玲:通讯作者,女,博士,副教授,主要从事新能源材料方面的研究 E-mail: ryan2054@126.com
引用本文:    
张自元, 门传玲, 曹军, 李振鹏, 赵明杰. 借助聚合物实现石墨烯转移的技术进展*[J]. 《材料导报》期刊社, 2017, 31(3): 130-135.
ZHANG Ziyuan, MEN Chuanling, CAO Jun, LI Zhenpeng, ZHAO Mingjie. Technological Advances in Realizing Graphene Transfer with the Help of Polymers. Materials Reports, 2017, 31(3): 130-135.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.021  或          https://www.mater-rep.com/CN/Y2017/V31/I3/130
1 Novoselov K S, Geim A K, et al. Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666.
2 Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology,2014,9(10):780.
3 Butler S Z, Hollen S M, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene[J]. ACS Nano,2013,7(4):2898.
4 Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308.
5 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
6 Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys Rev Lett,2008,100(1):016602.
7 Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun,2008,146(9):351.
8 Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnol,2008,3(8):491.
9 Novoselov K S, Fal V I, Colombo L, et al. A roadmap for graphene[J]. Nature,2012,490(7419):192.
10 Ren W, Cheng H M. The global growth of graphene[J]. Nature Nanotechnol,2014,9(10):726.
11 Zurutuza A, Marinelli C. Challenges and opportunities in graphene commercialization[J]. Nature Nanotechnology,2014,9(10):730.
12 Du Yan,Ji Tiezheng,Zhang Jiaoqiang,et al.Preparation and characterization of graphene nanosheets/high density polyethylene conductive composites[J]. J Aeronautical Mater,2013,33(1):68(in Chinese).
杜彦, 季铁正, 张教强, 等. 石墨烯/高密度聚乙烯导电复合材料的制备与表征[J]. 航空材料学报,2013,33(1):68.
13 Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angew Chem Int Ed,2009,48(42):7752.
14 Qian Y, Lu S, Gao F. Preparation of MnO2/graphene composite as electrode material for supercapacitors[J]. J Mater Sci,2011,46(10):3517.
15 Yang X, Niu G, Cao X, et al. The preparation of functionalized graphene oxide for targeted intracellular delivery of siRNA[J]. J Mater Chem,2012,22(14):6649.
16 Kim I H, Jeong Y G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity[J]. J Polym Sci Part B: Polym Phys,2010,48(8):850.
17 Yu Q, Lian J, Siriponglert S, et al. Graphene segregated on Ni surfaces and transferred to insulators[J]. Appl Phys Lett,2008,93(11):113103.
18 Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457(7230):706.
19 Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324(5932):1312.
20 Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,2008,9(1):30.
21 Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnol,2010,5(8):574.
22 Chandrashekar B N, Deng B, Smitha A S, et al. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator[J]. Adv Mater,2015,27(35):5210.
23 Wang Y, Tong S W, Xu X F, et al. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells[J]. Adv Mater,2011,23(13):1514.
24 Li X, Zhu Y, Cai W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Lett,2009,9(12):4359.
25 Liang X, Sperling B A, Calizo I, et al. Toward clean and crackless transfer of graphene[J]. ACS Nano,2011,5(11):9144.
26 Caldwell J D, Anderson T J, Culbertson J C, et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates[J]. ACS Nano,2010,4(2):1108.
27 Song J, Kam F Y, Png R Q, et al. A general method for transfering graphene onto soft surfaces[J]. Nature Nanotechnol,2013,8(5):356.
28 Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films[J]. Nano Lett,2010,10(2):490.
29 Shan Z, Li Q, Zhao Z,et al.One-step transfer and doping of large area graphene by ultraviolet curing adhesive[J]. Carbon,2015,84:9.
30 Kim K K, Reina A, Shi Y, et al. Enhancing the conductivity of transparent graphene films via doping[J]. Nanotechnology,2010,21(28):285205.
31 Deng B, Hsu P C, Chen G, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-perfor-mance flexible transparent electrodes[J]. Nano Lett,2015,15(6):4206.
32 Man H, Yunlong G, Bin W, et al. Progress in transfer techniques of graphene synthesized by chemical vapor deposition[J].Chemistry,2012,75(11):974(in Chinese).
黄曼,郭云龙,武斌,等.化学气相沉积法合成石墨烯的转移技术研究进展[J].化学通报,2012,75(11):974.
33 Lock E H, Baraket M, Laskoski M, et al. High-quality uniform dry transfer of graphene to polymers[J]. Nano Lett,2011,12(1):102.
34 Park J, Hann S, Lu Y. Synthesis of graphene pattern using laser-induced chemical vapor deposition[C]//SPIE LASE. International Society for Optics and Photonics,2014:896813.
35 Marta B, Leordean C, Istvan T, et al. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films[J]. Appl Surf Sci,2016,363:613.
36 Cai Wei, Wang Cong, Fang Xiaohong, et al. Progress in transfer technologies and related supporting materials for grapheme film synthesized by chemical vapor deposition[J]. Mater Mechanical Eng,2015,39(11):7(in Chinese).
蔡伟, 王聪, 方小红,等.化学气相沉积生长石墨烯薄膜转移方法及转移用支撑材料的研究进展[J].机械工程材料,2015,39(11):7.
37 Fang W, Hsu A L, Song Y, et al. Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition[J]. ACS Nano,2014,8(6):6491.
38 Jeong H J, Kim H Y, Jeong S Y, et al. Improved transfer of chemical-vapor-deposited graphene through modification of intermolecular interactions and solubility of poly (methylmethacrylate) layers[J]. Carbon,2014,66:612.
39 Martins L G P, Song Y, Zeng T, et al. Direct transfer of graphene onto flexible substrates[J]. Proceedings National Academy Sciences,2013,110(44):17762.
40 Verma V P, Das S, Lahiri I, et al. Large-area graphene on polymer film for flexible and transparent anode in field emission device[J]. Appl Phys Lett,2010,96(20):203108.
41 Wang D Y, Huang I, Ho P H, et al. Clean-lifting transfer of large-area residual-free graphene films[J]. Adv Mater,2013,25(32):4521.
42 Cherian C T, Giustiniano F, Martin-Fernandez I, et al. ‘Bubble-free’ electrochemical delamination of CVD graphene films[J]. Small,2015,11(2):189.
43 Suk J W, Kitt A, Magnuson C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano,2011,5(9):6916.
44 Lin Y C, Lu C C, Yeh C H, et al. Graphene annealing: How clean can it be?[J]. Nano Lett,2011,12(1):414.
45 Suk J W, Lee W H, Lee J, et al. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue[J]. Nano Lett,2013,13(4):1462.
46 Her M, Beams R, Novotny L. Graphene transfer with reduced residue[J]. Phys Lett A,2013,377(21):1455.
47 Barin G B, Song Y, de Fátima Gimenez I, et al. Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance[J]. Carbon,2015,84:82.
48 Cha S, Cha M, Lee S, et al. Low-temperature, dry transfer-printing of a patterned graphene monolayer[J]. Sci Rep,2015,5:17877.
49 Chen X D, Liu Z B, Zheng C Y, et al. High-quality and efficient transfer of large-area graphene films onto different substrates[J]. Carbon,2013,56:271.
50 Kang J, Shin D, Bae S, et al. Graphene transfer: Key for applications[J]. Nanoscale,2012,4(18):5527.
51 Fechine G J M, Martin-Fernandez I, Yiapanis G, et al. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates[J]. Carbon,2015,83:224.
52 Cai C, Jia F, Li A, et al. Crackless transfer of large-area graphene films for superior-performance transparent electrodes[J]. Carbon,2016,98:457.
53 Hiranyawasit W, Punpattanakul K, Pimpin A, et al. A novel me-thod for transferring graphene onto PDMS[J]. Appl Surf Sci,2015,358:70.
54 Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Adv Mater,2010,22(35):3906.
55 Kang J,Hwang S,Kim J H,et al.Efficient transfer of large-area graphene films onto rigid substrates by hot pressing [J].ACS Nano,2012,6(6):5360.
56 Chen Mu, Yan Yue, Zhang Xiaofeng, et al. Advances in large-area graohene film transfer techniques[J]. J Aeronautical Mater,2015,35(2):1(in Chinese).
陈牧,颜悦,张晓锋,等.大面积石墨烯薄膜转移技术研究进展[J].航空材料学报,2015,35(2):1.
57 Yamada T, Ishihara M, Kim J, et al. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature[J]. Carbon,2012,50(7):2615.
58 Yamada T, Ishihara M, Hasegawa M. Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition[J]. Thin Solid Films,2013,532:89.
59 Ryu J, Kim Y, Won D, et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition[J]. ACS Nano,2014,8(1):950.
60 Hong B H,Ahn J,Kim H K,et al.Roll-to-roll doping method of graphene film, and doped graphene film: US 8926854[P].2015-01-06.
61 Kobayashi T, Bando M, Kimura N, et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process[J]. Appl Phys Lett,2013,102(2):023112.
62 Wood J D, Doidge G P, Carrion E A, et al. Annealing free, clean graphene transfer using alternative polymer scaffolds[J]. Nanotechnology,2015,26(5):055302.
63 Lupina G, Kitzmann J, Costina I, et al. Residual metallic contamination of transferred chemical vapor deposited graphene[J]. ACS Nano,2015,9(5):4776.
64 Anagnostopoulos G, Androulidakis C, Koukaras E N, et al. Stress transfer mechanisms at the submicron level for raphene/polymer systems[J]. ACS Appl Mater Interfaces,2015,7(7):4216.
[1] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[2] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[3] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[4] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[5] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[6] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[7] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[8] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[9] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[10] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[11] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[12] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[13] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[14] 张白, 彭晖, 杨致远. 海水干湿循环作用下地聚物基珊瑚骨料混凝土力学性能的研究[J]. 材料导报, 2024, 38(23): 23090081-9.
[15] 袁璐, 许旻, 李毅, 王虎, 高恒蛟, 高文生, 李中华, 何延春. 聚酰亚胺材料的抗原子氧防护技术研究进展[J]. 材料导报, 2024, 38(23): 23080220-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed