Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23080220-10    https://doi.org/10.11896/cldb.23080220
  高分子与聚合物基复合材料 |
聚酰亚胺材料的抗原子氧防护技术研究进展
袁璐1, 许旻1,*, 李毅1, 王虎1, 高恒蛟1, 高文生2,*, 李中华1, 何延春1
1 中国空间技术研究院兰州空间技术物理研究所,真空技术与物理重点实验室,兰州 730000
2 兰州大学化学化工学院,兰州 730000
Advanced Progress of Atomic Oxygen Resistant Techniques on Polyimide Materials
YUAN Lu1, XU Min1,*, LI Yi1, WANG Hu1, GAO Hengjiao1, GAO Wensheng2,*, LI Zhonghua1, HE Yanchun1
1 Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, China Academy of Space Technology, Lanzhou 730000, China
2 College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 30829KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低地球轨道环境中的原子氧具有高通量和强氧化性,会快速侵蚀航天器表面的聚酰亚胺材料,造成材料严重失效。针对聚酰亚胺材料抵抗原子氧侵蚀能力不足的问题,国内外研究人员积极探索,已提出多种抗原子氧防护技术,这些技术方案可分为包覆法、基体调控和外加涂层防护三个方面。此外,本文还整理了计算模拟探究抗原子氧防护效果的主要策略,指出计算与实验相结合有助于提高材料模型的准确性以及对抵抗原子氧侵蚀效果的预测能力。本文结合航天工程的实际应用,合理分析这三类防护措施的优势与不足,系统总结出不同聚酰亚胺基复合材料的抗原子氧防护性能。最后,对聚酰亚胺材料抗原子氧防护技术的研究工作进行总结,并展望了未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁璐
许旻
李毅
王虎
高恒蛟
高文生
李中华
何延春
关键词:  原子氧  低地球轨道  防护涂层  聚合物材料  侵蚀率    
Abstract: Atomic oxygen (AO) in low earth orbit environment has high flux and strong oxidizing properties. It can erode rapidly the polyimide on the surface of the spacecraft, causes serious material failure. Researchers have explored many positive solutions to the problem of weak AO resis-tance of polyimide, and there are three main types of these technical approaches, i.e. cladding blanket, matrix modification and coating protection. Besides, the main strategies for numerical simulation technique of AO resistant effect were also summarized. It showed that combination of simulation and experiment could improve the model accuracy and the predictive ability of AO resistant effect. In this work, the advantages and disadvantages of these solutions were analyzed according to the aerospace engineering, and then we systematically summarized resistance abilities of different polyimide materials. Overall, we summed up the AO resistant techniques of polyimide materials clearly and prospected their future development tendency.
Key words:  atomic oxygen    low earth orbit    protective coating    polymer    erosion yield
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  V45  
基金资助: 国家重点研发计划(2022YFB3806300);国家自然科学基金(U1937601;12305289);国防基础科研项目(JCKY2020203B019);甘肃省自然科学基金(23JRRA1363)
通讯作者:  * 许旻,1994年毕业于哈尔滨工业大学电气工程专业本科,2006年兰州大学凝聚态物理专业博士毕业。研究员,现就职兰州空间技术物理研究所,长期从事表面工程、先进材料和装备技术研究工作。现为中国空间技术研究院物理电子学博士研究生导师、产品首席专家,航天科技集团公司表面工程工艺首席专家。长期科研工作中,研制的多种产品在航天型号中成功应用,承担过多项国家重大基础科研和工程类项目的研究工作,在科研工作中发表论文30余篇,包含Composites Part B、ACS Applied Polymer Material、Diamond and Related Material、Composite Interfaces等。授权专利25项,获多项国防和省科技进步奖。xmsurface@126.com
高文生,兰州大学化学化工学院博士,从事博士后研究(合作导师:李灿院士)。2013年中国海洋大学材料化学专业本科毕业,2018年兰州大学材料物理与化学博士毕业,2018—2019年兰州空间物理技术研究所从事空间站原子氧防护工作。2019年至今,兰州大学物理化学专业从事博士后研究工作。目前主要从事聚合物纳米复合材料的结构设计及应用开发等方面的研究工作。以第一作者及通信作者身份在Advanced Materials、Composites Part A、Composites Part B等专业领域期刊发表论文10余篇,申请国家发明专利3项。gaowsh13@lzu.edu.cn   
作者简介:  袁璐,2018年6月、2022年6月分别于南京理工大学和上海大学获得工学学士学位和硕士学位。现为中国空间技术研究院兰州空间技术物理研究所博士研究生,在许旻研究员的指导下进行研究。目前主要研究领域为原子氧防护与涂层材料方向。
引用本文:    
袁璐, 许旻, 李毅, 王虎, 高恒蛟, 高文生, 李中华, 何延春. 聚酰亚胺材料的抗原子氧防护技术研究进展[J]. 材料导报, 2024, 38(23): 23080220-10.
YUAN Lu, XU Min, LI Yi, WANG Hu, GAO Hengjiao, GAO Wensheng, LI Zhonghua, HE Yanchun. Advanced Progress of Atomic Oxygen Resistant Techniques on Polyimide Materials. Materials Reports, 2024, 38(23): 23080220-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080220  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23080220
1 Parkhomenko I N, Vlasukova L A, Parfimovich I D, et al. Acta Astronautica, 2023, 204, 124.
2 Li Y, Li Z H, He Y C, et al. ACS Appliled Materials & Interfaces, 2023, 15, 48810.
3 Kidena K, Endo M, Takamatsu H, et al. Metals, 2015, 5, 1957.
4 Valer J C, Roberts G, Chambers A, et al. IEEE Sensors Journal, 2013, 13, 3046.
5 Devapal D, Packirisamy S, Korulla R M, et al. Journal of Applied Polymer Science, 2010, 94, 2368.
6 Wagner S, Dai H X, Stapleton R A, et al. High Performance Polymers, 2006, 18, 399.
7 Dever J A, Miller S K, Sechkar E A, et al. High Performance Polymers, 2008, 20, 371.
8 Zhao G, Wang Q H, Hussainova I, et al. Key Engineering Materials, 2016, 674, 239.
9 Shu M, Li Z H, Man Y R, et al. Corrosion Science, 2016, 112, 418.
10 Zhao W, Li W P, Liu H C, et al. Chinese Journal of Aeronautics, 2010, 23, 268.
11 Groh K K, Banks B A, Mitchell G G, et al. NASA/TM-2013-217847, Ohio: NASA, 2013.
12 Vernigorov K B, Alent'ev A Y, Meshkov I B, et al. Inorganic Materials Applied Research, 2012, 3, 81.
13 Arjun G N, Lincy T L, Sajitha T S, et al. Materials Science Forum, 2015, 830, 699.
14 Goto A, Umeda K, Yukumatsu K, et al. CEAS Space Journal, 2021, 13, 415.
15 Shimamura H, Nakamura T. Polymer Degradation and Stability, 2009, 94, 1389.
16 Atar N, Grossman E, Gouzman I, et al. ACS Applied Materials & Interfaces, 2015, 7, 12047.
17 Hu L F, Li M S, Xu C H, et al. Surface and Coatings Technology, 2009, 203, 3338.
18 Reddy M R, Srinivasamurthy N, Agrawal B L. Surface and Coatings Technology, 1993, 58, 1.
19 Duo S W, Chang Y C, Liu T Z, et al. Physics Procedia, 2013, 50, 337.
20 Gouzman I, Grossman E, Verker R, et al. Advanced Materials, 2019, 31, 1807738.
21 Liu H. Study on photoactive silylation process of low environmental sensitivity. Master's Thesis, Harbin Institute of Technology, China, 2018(in Chinese).
刘浩. 具有低环境参数敏感性的光活化硅烷化工艺方法研究. 硕士学位论文, 哈尔滨工业大学, 2018.
22 Wang R H, Zhao R H, Zou W Y, et al. Materials Reports, 2021, 35(11), 11187(in Chinese).
王芮晗, 赵若虹, 邹宛晏, 等. 材料导报, 2021, 35(11), 11187.
23 Huang C J, Liu J, Zhao L B, et al. Composites: Part A, 2023, 168, 107459.
24 Li G H, Liu X, Liu Y, et al. In: 3rd AIAA Atmospheric Space Environments Conference. Hawaii, 2011, pp.3825.
25 Banks B A, Auer B M, Rutledge S K, et al. Mrs Proceedings, 1992, 278, 41.
26 Zhao L, Li Z H, Zheng K H. Vacuum or Cryogenics, 2011, 17(4), 187(in Chinese).
赵琳, 李中华, 郑阔海. 真空与低温, 2011, 17(4), 187.
27 Finckenor M M, Zwiener J M, Pippin G. In: National Space and Missile Materials Symposium. Colorado, 2007.
28 Watson K A, Palmieri F L and Connell J W. Macromolecules, 2002, 35, 4968.
29 Thompson C M, Smith J G, Watson K A, et al. In: 34th International Sampe Technical Conference. Maryland, 2002, NASA: CONTRACT_ GRANT: NAS1-97046.
30 Connell J W. High Performance Polymers, 2000, 12, 43.
31 Wang C B, Jiang H H, Tian D B, et al. High Performance Polymers, 2019, 31, 969.
32 Connell J W, Watson K A. High Performance Polymers, 2001, 13, 23.
33 Xiao F, Wang K, Zhan M S. Journal of Materials Science, 2012, 47, 4904.
34 Brunsvold A L, Zhang J M, Upadhyaya H P, et al. ACS Applied Mate-rials & Interfaces, 2009, 1, 187.
35 Zhang J M, Lindholm N F, Brunsvold A L, et al. ACS Applied Materials & Interfaces, 2009, 1, 653.
36 Minton T K, Wu B H, Zhang J M, et al. ACS Applied Materials & Interfaces, 2010, 2, 2515.
37 Tagawa M, Yokota K, Kishida K, et al. High Performance Polymers, 2010, 22, 213.
38 Brunsvold A L, Minton T K, Gouzman I, et al. High Performance Polymers, 2004, 16, 303.
39 Wu H, Zhang Y, Wu B H, et al. Polymers, 2020, 12, 2865.
40 Lei X F, Chen Y, Zhang H P, et al. ACS Applied Materials & Interfaces, 2013, 5, 10207.
41 Qian M, Murray V J, Wei W, et al. ACS Applied Materials & Interfaces, 2016, 8, 33982.
42 Andropova U, Serenko O, Tebeneva N, et al. Polymer Testing, 2020, 84, 106404.
43 Zhang J, Ai L, Li X, et al. Materials Chemistry and Physics, 2019, 222, 384.
44 Wang X, Zhao X H, Wang M Z, et al. Nuclear Instruments and Methods in Physics Research, 2006, 243, 320.
45 Lv M, Wang Q H, Liang Y M, et al. Composites Part B Engineering, 2015, 77, 215.
46 Xiao F, Wang K, Zhan M S. Applied Surface Science, 2010, 256, 7384.
47 Zhao Y Z, Shen Z G, Zhang X J. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127398.
48 Zhang W, Yi M, Shen Z G, et al. Journal of Material Science, 2013, 48, 2416.
49 Xu B, Chen Y H, Ru X C, et al. Acta Materiae Compositae Sinica, 2018, 35(9), 2321(in Chinese).
徐博, 陈妍慧, 茹煊赫, 等. 复合材料学报, 2018, 35(9), 2321.
50 Qin S L, Qiu S H, Wang L P, et al. High Performance Polymers, 2019, 31, 331.
51 Xie K F, Wang W J, Gao W S, et al. Composites Part B, 2022, 239, 109970.
52 Ren S M, Cui M J, Wang L P, et al. Applied Surface Science, 2019, 479, 669.
53 Baby M, Devapal D, Maniyeri S C. Surface and Coatings Technology, 2022, 448, 128886.
54 Liu Z Q, Meyers M A, Zhang Z F, et al. Progress in Materials Science, 2017, 88, 467.
55 Pan X F, Wu B, Yu S Y, et al. Advanced Materials, 2022, 34, 2105299.
56 Mao J C, Han D F, Yang X J, et al. Science Technology and Engineering, 2019, 19(28), 129. (in Chinese)
毛金成, 韩涤非, 杨小江, 等. 科学技术与工程, 2019, 19(28), 129.
57 Gotlib-Vainstein K, Gouzman I, Girshevitz O, et al. ACS Applied Mate-rials & Interfaces, 2015, 7, 3539.
58 Gouzman I, Girshevitz O, Eitan G, et al. ACS Applied Materials & Interfaces, 2010, 2, 1835.
59 Banks B A, Snyder A, Miller S K, et al. In: Sixth International Confe-rence on Protection of Materials and Structures from Space Environment. Toronto, 2004, NASA/TM-2002-211577.
60 Chambers A R, Harris I L, Roberts G T. Materials Letters, 1996, 26, 121.
61 Duo S W, Li M S, Zhang Y M, et al. Rare Metal Materials and Engineering, 2006, 35(7), 1057. (in Chinese)
多树旺, 李美栓, 张亚明, 等. 稀有金属材料与工程, 2006, 35(7), 1057.
62 Qi H, Qian Y H, Xu J J, et al. Corrosion Science, 2017, 124, 56.
63 Ritchie I, Gjerde H B. Surface and Coatings Technology, 1989, 39, 599.
64 Duo S W, Li M S, Zhou Y C. Transactions of Nonferrous Metals Society of China, 2006, 16, s661.
65 Zhang X, Wu Y Y, He S Y, et al. Materials Chemistry and Physics, 2009, 114, 179.
66 Snyder A, Groh K K. NASA/TM-2001-210596, Ohio: NASA, 2001.
67 Scialdone J J, Clatterbuck C. NASA-TM-104574, Maryland: NASA, 1992.
68 Devapal D, Packirisamy S, Ninan K N, et al. Journal of Materials Science, 2006, 41, 5764.
69 Fewell L L. Journal of Applied Polymer Science, 1990, 41, 391.
70 Wang X H, Li Y X, Sun J Q, et al. Advanced Materials, 2018, 30, 1803854.
71 Xu M, Zhao Y P, Gao W S, et al. ACS Applied Polymer Materials, 2019, 1, 3253.
72 Li Y, Li Z H, Li D T, et al. Plasma Science and Technology, 2022, 24, 065505.
73 Li Y, Li Z H, He Y C, et al. Journal of Coatings Technology and Research, 2022, 20, 623.
74 Wang J, Li W P, Chen Y C, et al. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(7), 824. (in Chinese)
王静, 李卫平, 陈贻炽, 等. 北京航空航天大学学报, 2009, 35(7), 824.
75 Yu C Y, Ju P F, Chen L, et al. Industrial and Engineering Chemistry Research, 2019, 58, 17027.
76 Tagawa M, Yokota K, Ohmae N, et al. Tribology Letters, 2004, 17, 859.
77 Duo S W, Li M S, Zhu M, et al. Materials Chemistry and Physics, 2008, 112, 1093.
78 Zhao L, Leng X S, Li J, et al. Coatings, 2023, 13, 153.
79 Banks B A, Demko R. NASA/TM-2002-211360, Ohio: NASA, 2002.
80 Wang Q, Liang J F, Zhang R H, et al. Chinese Physics B, 2013, 22, 519.
81 Guo S Y, Yuan L, Liu X H, et al. Chemical Physics Letters, 2017, 686, 83.
82 Zhang H J, Ren S M, Xue Q J, et al. Applied Surface Science, 2018, 444, 28.
83 Gao H J, Xiong Y Q, Zhang K F, et al. Journal of Renewable Materials, 2022, 11, 1715.
84 Rahmani F, Nouranian S, Li X B, et al. ACS Applied Materials & Interfaces, 2017, 9, 12802.
85 Rahnamoun A, van Duin A C T. The Journal of Physical Chemistry A, 2014, 118, 2780.
86 Zeng F L, Peng C, Liu Y Z, et al. The Journal of Physical Chemistry A, 2015, 119, 8359.
87 Li G H, Liu X, Li T. Composites: Part B, 2013, 44, 60.
88 Liu Y, Li G H. Acta Astronautica, 2010, 67, 388.
89 Liu Y, Liu X, Li G H, et al. Applied Surface Science, 2010, 256, 6096.
90 Yang X, Zhang K F, Ye X Y, et al. Materials Today Communications, 2021, 28, 102638.
91 Yang X, Zhang K F, Ye X Y, et al. Materials Today Communications, 2023, 35, 106091.
92 Rao Z Y, Xie R W, Raabe D, et al. Science, 2022, 378, 78.
93 Wahl C B, Aykol M, Swisher J H, et al. Science Advances, 2021, 7, 1.
[1] 卜锦超, 唐中华, 徐凯, 何财兵, 王敏嘉. 釉质防护涂层的湿化学法制备及劣化性能[J]. 材料导报, 2024, 38(4): 22030305-5.
[2] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[3] 陈昌隆, 赵宜妮, 李玉阁. 液体高速冲蚀与防护涂层研究现状[J]. 材料导报, 2021, 35(z2): 361-366.
[4] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[5] 王芮晗, 赵若虹, 邹宛晏, 王敏, 周博, 齐胜利, 刘刚, 武德珍. 耐原子氧聚酰亚胺材料的研究进展[J]. 材料导报, 2021, 35(11): 11187-11195.
[6] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed