Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 123-129    https://doi.org/10.11896/j.issn.1005-023X.2017.03.020
  碳纳米材料 |
石墨烯/n-Si肖特基结太阳能电池的性能限制因素及效率提升方法*
尚钰东1,2, 陈秀华1,2, 李绍元3, 马文会3, 王月春1,2, 向富维1,2
1 云南大学材料科学与工程学院,昆明 650091;
2 云南大学物理与天文学院,昆明 650091;
3 昆明理工大学冶金与能源工程学院,真空冶金国家工程实验室,昆明 650093;
Performance Limiting Factors and Efficiency Improvement Methods of Graphene/n-Si Schottky Junction Solar Cell
SHANG Yudong1,2, CHEN Xiuhua1,2, LI Shaoyuan3, MA Wenhui3, WANG Yuechun1,2, XIANG Fuwei1,2
1 Faculty of Materials Science and Engineering, Yunnan University, Kunming 650091;
2 Faculty of Physics and Astronomy, Yunnan University, Kunming 650091;
3 National Engineering Laboratory for Vacuum Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093;
下载:  全 文 ( PDF ) ( 1688KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯是一种新型的零带隙、半金属材料,具有高透光率,良好的电导率,高稳定性及力学性能,可替代传统的ITO用于制备新一代石墨烯/n-Si肖特基结太阳能电池。详细表述了目前石墨烯/n-Si肖特基结太阳能电池的研究进展,重点总结分析了影响石墨烯/n-Si肖特基结太阳能电池性能的原因及相关的优化方法,为将来进一步对石墨烯/n-Si肖特基结太阳能电池的研究与应用提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尚钰东
陈秀华
李绍元
马文会
王月春
向富维
关键词:  石墨烯  肖特基结    太阳能电池    
Abstract: Graphene is a new type zero band gap and semi-metal material. Due to its high transmittance, good electrical conductivity, high stability, mechanical properties and other excellent performance, it could replace the traditional ITO material to prepare the new generation of graphene/n-Si Schottky junction solar cells. In this review the research progress of graphene/n-Si Schottky junction solar cells are described in detail, the reasons for affecting the performance of graphene/n-Si Schottky junction solar cells and the related optimization methods are mainly summarized and analyzed, in order to provide references for the further research and application of graphene/n-Si Schottky junction solar cells in the future.
Key words:  graphene    Schottky junction    silicon    solar cells
出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TM914.4  
基金资助: *国家自然科学基金(51504117);高等学校博士学科点专项科研基金(20135314110001);云南省复杂有色金属资源协同创新中心项目(2014XTZS009);云南省复杂有色金属资源清洁利用国家工程实验室开放基金(CNMRCUKF1404)
作者简介:  尚钰东:男,1991年生,硕士研究生,研究方向为石墨烯硅基太阳能电池 陈秀华:通讯作者,女,1973年生,博士,教授,研究方向为光电子信息集成电路布线材料、太阳能级硅电池材料及固体氧化物电池材料 E-mail:chenxh@ynu.edu.cn
引用本文:    
尚钰东, 陈秀华, 李绍元, 马文会, 王月春, 向富维. 石墨烯/n-Si肖特基结太阳能电池的性能限制因素及效率提升方法*[J]. 《材料导报》期刊社, 2017, 31(3): 123-129.
SHANG Yudong, CHEN Xiuhua, LI Shaoyuan, MA Wenhui, WANG Yuechun, XIANG Fuwei. Performance Limiting Factors and Efficiency Improvement Methods of Graphene/n-Si Schottky Junction Solar Cell. Materials Reports, 2017, 31(3): 123-129.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.020  或          https://www.mater-rep.com/CN/Y2017/V31/I3/123
1 Lewis N S. Toward cost-effective solar energy use[J]. Science,2007,315(5813):798.
2 Michael Grätzel. Photoelectrochemical cells[J]. Nature,2001,414:338.
3 Fang X S, Wu L M, Hu L F. ZnS nanostructure arrays: A developing material star[J]. Adv Mater,2011,23(5):585.
4 Hovel H J. Semiconductors and semimetals: Solar cells[M]. New York: Academic Press,1975.
5 Johnston K W, Pattantyus-Abraham A G, Clifford J P, et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion[J]. Appl Phys Lett,2008,92(15):151115.
6 Liu C Y, Kortshagen U R. A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals[J]. Nanoscale Res Lett,2010,5:1253.
7 Tang J, Wang X H, Brzozowski L, et al. Schottky quantum dot solar cells stable in air under solar illumination[J]. Adv Mater,2010,22(12):1398.
8 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
9 Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Lett,2011,11(6):2396.
10 Ni G X, Zheng Y, Bae S, et al. Graphene-ferroelectric hybrid structure for flexible transparent electrodes[J]. ACS Nano,2012,6(5):3935.
11 Blake P, Hill E W, Neto A H C, et al. Making graphene visible[J]. Appl Phys Lett,2007,91(6):063124.
12 Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308.
13 Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Rev Mod Phys,2009,81(1):109.
14 Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457:706.
15 Xu D, Yu X, Zuo L, et al. Interface engineering and efficiency improvement of monolayer grapheneesilicon solar cells by inserting an ultra-thin LiF interlayer[J]. RSC Adv,2015,5:46480.
16 Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nat Photonics,2010,4:611.
17 Weiss N O, Zhou H, Liao L, et al. Graphene: An emerging electronic material[J]. Adv Mater,2012,24(43):5782.
18 Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501.
19 Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324(5932):1312.
20 Reina A, Jia X, Ho J, et al. Few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,2009,9(1):30.
21 Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol,2010,5:574.
22 Li X M, Zhu H W, Wang K L, et al. Graphene-on-silicon Schottky junction solar cells[J]. Adv Mater,2010,22(25):2743.
23 Lin Y X, Li X M, Xie D, et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function[J]. Energy Environ Sci,2013,6:108.
24 Lin Y X, Xie D, Chen Y, et al. Optimization of graphene/silicon heterojunction solar cells[C]// Conference Record of the IEEE Photovoltaic Specialists Conference. New York,2012:2566.
25 Li Y F, Yang W, Tu Z Q, et al. Schottky junction solar cells based on graphene with different numbers of layers[J]. Appl Phys Lett,2014,104:043903.
26 Wu Y M, Zhang X Z, Jie J S, et al. Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells[J]. J Phys Chem C,2013,117:11968.
27 Geng H, Kim K K, Song C, et al. Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment[J]. J Mater Chem,2008,18:1261.
28 Li X M, Xie D, Park H, et al. Ion doping of graphene for high-efficiency heterojunction solar cells[J]. Nanoscale,2013,5:1945.
29 Li X M, Xie D, Park H, et al. Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells[J]. Adv Energy Mater,2013,3(8):1029.
30 Cui T X, Lv R T, Huang Z H, et al. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping[J]. J Mater Chem A,2013,1:5736.
31 Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 44) [J]. Prog Photovolt Res Appl,2014,22:701.
32 Ho P H, Liou Y T, Chuang C H, et al. Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene he-terojunction solar cells[J]. Adv Mater,2015,27(10):1724.
33 Shi Y M, Kim K K, Reina A, et al. Work function engineering of graphene electrode via chemical doping[J]. ACS Nano,2010,4(5):2689.
34 Liu X, Zhang X W, Meng J Y, et al. High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid[J]. Appl Phys Lett,2015,106:233901.
35 Liu X, Zhang X W, Yin Z G, et al. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles[J]. Appl Phys Lett,2014,105:183901.
36 Miao X C, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Lett,2012,12(6):2745.
37 Ayhan M E, Kalita G, Kondo M, et al. Photoresponsivity of silver nanoparticles decorated graphene-silicon Schottky junction[J]. RSC Adv,2014,4:26866.
38 Li X, Fan L L, Li Z, et al. Boron doping of graphene for graphene-silicon p-n junction solar cells[J]. Adv Energy Mater,2012,2(4):425.
39 Feng T T, Xie D, Lin Y X, et al. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS[J]. Nanoscale,2012,4:2130.
40 Fan G F, Zhu H W, Wang K L, et al. Graphene/silicon nanowire Schottky junction for enhanced light harvesting[J]. ACS Appl Mater Interfaces,2011,3(3):721.
41 Xie C, Lv P, Nie B, et al. Monolayer graphene film/silicon nanowire array Schottky junction solar cella[J]. Appl Phys Lett,2011,99:133113.
42 Kelzenberg M D, Turner-Evans D B, Kayes B M, et al. Photovoltaic measurements in single-nanowire silicon solar cells[J]. Nano Lett,2008,8(2):710.
43 Zhang X Z, Xie C, Jie J S, et al. High-efficiency graphene/Si na-noarray Schottky junction solar cells via surface modification and graphene doping[J]. J Mater Chem A,2013,1:6593.
44 Xie C, Zhang X J, Ruan K Q, et al. High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells[J]. J Mater Chem A,2013,1:15348.
45 Feng T T, Xie D, Lin Y X, et al. Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate[J]. Appl Phys Lett,2011,99:233503.
46 Peng L Q,Xu Y,Wu Y,et al.Aligned single-crystalline Si nanowire arrays for photovoltaic applications[J]. Small,2005,1(11):1062.
47 Stelzner T, Pietsch M, Andrä1 G, et al. Silicon nanowire-based solar cells[J]. Nanotechnol,2008,19:295203.
48 Sivakov V, Andrä G, Gawlik A, et al. Silicon nanowire-based solar cells on glass: Synthesis, optical properties, and cell parameters[J]. Nano Lett,2009,9(4):1549.
49 Kayes B M, Zhang L, Twist R, et al. Flexible thin-film tandem solar cells with >30% efficiency[J]. IEEE J Photovoltaics,2014,4(2):729.
50 Garnett E C, Yang P D. Silicon nanowire radial p-n junction solar cells[J]. Am Chem Soc,2008,130(29):9224.
51 Gunawan O, Guha S. Characteristics of vapor-liquid-solid grown silicon nanowire solar cells[J]. Energy Mater Solar Cells,2009,93(8):1388.
52 Tian B, Zheng X L, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature,2007,449:885.
53 Tsakalakos L, Balch J, Fronheiser J, et al. Silicon nanowire solar cells[J]. Appl Phys Lett,2007,91:233117.
54 Garnett E, Yang P D. Light trapping in silicon nanowire solar cells[J]. Nano Lett,2010,10(3):1082.
55 Muskens O L, Rivas J G. Algra R E, et al. Design of light scatte-ring in nanowire materials for photovoltaic applications[J]. Nano Lett,2008,8(9):2638.
56 Xie C, Zhang X Z, Wu Y M, et al. Surface passivation and band engineering: A way toward high efficiency graphene-planar Si solar cells[J]. J Mater Chem A,2013,1:8567.
57 Jiao K J, Wang X L, Wang Y, et al. Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance[J]. J Mater Chem C,2014,2:7715.
58 Song Y, Li X M, Mackin C, et al. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells[J]. Nano Lett,2015,15(3):2104.
59 Li R, Di J T, Yong Z H, et al. Polymethylmethacrylate coating on aligned carbon nanotube-silicon solar cells for performance improvement[J]. J Mater Chem A,2014,2:4140.
60 Li X K, Jung Y, Huang J, et al. Device area scale-up and improvement of SWNT/Si solar cells using silver nanowires[J]. Adv Energy Mater,2014,4(12):1400186.
61 Shi E Z, Zhang L H, Li Z, et al. TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%[J]. Sci Rep,2012,2:884.
62 Wang F J, Kozawa D, Miyauchi Y, et al. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers[J]. Nat Commun,2015,6:6305.
63 Yu H A, Kaneko T, Yoshimura S, et al. The junction characteristics of carbonaceous film/n-type silicon (C/n-Si) layer photovoltaic cell[J]. Appl Phys Lett,1996,69:3042.
64 Shi E Z, Li H B, Yang L, et al. Colloidal antireflection coating improves graphene-silicon solar cells[J]. Nano Lett,2013,13(4):1776.
65 Yavuz S, Kuru C, Choi D, et al. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells[J]. Nanoscale,2016,8:6473.
66 Lancellotti L, Bobeico E, Capasso A, et al. Combined effect of double antireflection coating and reversible molecular doping on performance of few-layer graphene/n-silicon Schottky barrier solar cells[J]. Solar Energy,2016,127:198.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[3] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[4] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[5] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[6] 王正省, 任永生, 马文会, 吕国强, 曾毅, 詹曙, 陈辉, 王哲. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 22100160-13.
[7] 刘恩序, 李俊杰, 刘阳, 杨超然, 周娜, 李俊峰, 罗军, 王文武. 环栅晶体管制备中SiGe选择性刻蚀技术综述[J]. 材料导报, 2024, 38(9): 22110004-7.
[8] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[9] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[10] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[11] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[12] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[13] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[14] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[15] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed