Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 86-90    https://doi.org/10.11896/j.issn.1005-023X.2017.024.017
  第一届先进胶凝材料研究与应用学术会议 |
温度对含模拟α-高放核废液的磷酸镁水泥固化体性能的影响
傅明娇1,杨海林1,2,吴传明1,张 影2,尤 超1,钱觉时1
1 重庆大学材料科学与工程学院,重庆400045;
2 重庆工商大学环境与资源学院,重庆400067
Effects of Temperature on the Properties of α-High-level Radioactive Waste Immobilized, Hardened Magnesium Phosphate Cement
FU Mingjiao1, YANG Hailin1,2, WU Chuanming1, ZHANG Ying2, YOU Chao1, QIAN Jueshi1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045;
2 College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067
下载:  全 文 ( PDF ) ( 680KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用磷酸镁水泥(Magnesium potassium phosphate cement,MPC)对模拟α-高放核废液(HLW)进行固化,研究温度对固化体力学性能、物相组成、微观形貌及核素Cs+浸出率的影响。BET、XRD、SEM及AAS等测试结果表明,室温下MgO、KH2PO4与高放核废液反应形成致密结构;随着温度的升高,固化体脱水,400 ℃时孔道结构增多,平均孔径增大,抗压强度降低,Cs+浸出率增加;温度继续升高,磷酸镁水泥烧结陶瓷化,平均孔径逐渐减小,抗压强度增大;900 ℃时固化体表现出良好的陶瓷结构特征,晶粒完全熔融,晶粒间没有明显界线,Cs+的28 d浸出率为7.21×10-6 g/(cm2·d)。不同温度下高放核废液的磷酸镁水泥固化体核素Cs+的浸出率均能达到玻璃固化体的性能要求,表明磷酸镁水泥用于固化高放核废液具有明显优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
傅明娇
杨海林
吴传明
张 影
尤 超
钱觉时
关键词:  高放核废液  固化  磷酸镁水泥    
Abstract: The magnesium potassium phosphate cement (MPC) were used for immobilization of liquid acidic α-high-level radioactive waste (HLW). This work focused on the impact of heat-treatment temperature on mechanical property, phase, microstructure and Cs+ leaching rate of the solidified MPC. BET, XRD, SEM and AAS results showed that the ambient temperature reaction of MgO, KH2PO4 and HLW could form a dense structure, several kinds of phosphate was interspersed in the structure. The solidified MPC dehydrated with the increase of heat-treatment temperature, and obtained more pore structure, large average pore size, lower compressive strength and high Cs+ leaching rate after sintering at 400℃. As the temperature continued to rise, the solidified MPC was sintered and formed ceramic while the average pore diameter decreased and the compressive strength increased. The solidified MPC turned into ceramic structure after sintering at 900 ℃. Crystal grains melt down completely. The 28 d leaching rate of Cs+ in the solidified MPC was 7.21×10-6 g/(cm2·d). The leaching rate of Cs+ could reach the performance requirements of the vitrification form agent of the MPC solidified liquid with HLW at different heat-treatment temperatures, which showed obvious advantages of MPC in solidifying the HLW.
Key words:  high-level radioactive waste    immobilization    MPC
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU526  
基金资助: 国家自然科学基金国际合作项目(5141101039);重庆市教委科学技术研究项目(KJ1600636)
通讯作者:  钱觉时:男,1962年生,博士,教授,博士研究生导师,研究方向为胶凝材料、混凝土和固体废弃物资源化 E-mail:qianjueshi@163.com   
作者简介:  傅明娇:女,1992年生,硕士研究生,研究方向为高效核废液固化 E-mail:fmjblue@163.com
引用本文:    
傅明娇,杨海林,吴传明,张 影,尤 超,钱觉时. 温度对含模拟α-高放核废液的磷酸镁水泥固化体性能的影响[J]. 《材料导报》期刊社, 2017, 31(24): 86-90.
FU Mingjiao, YANG Hailin, WU Chuanming, ZHANG Ying, YOU Chao, QIAN Jueshi. Effects of Temperature on the Properties of α-High-level Radioactive Waste Immobilized, Hardened Magnesium Phosphate Cement. Materials Reports, 2017, 31(24): 86-90.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.017  或          https://www.mater-rep.com/CN/Y2017/V31/I24/86
1 Wen Juan. The ion irradiation effects on δ-phase and nanocrystalline pyrochlore[D]. Lanzhou: Lanzhou University, 2016(in Chinese).
温娟. δ相及纳米烧绿石氧化物的离子束辐照效应研究[D]. 兰州:兰州大学, 2016.
2 Lv Yanjie. Study on monazite phosphate glass-ceramics as wasteform for simulated α-HLLW[D]. Wuhan: China University of Geoscie-nces, 2008(in Chinese).
吕彦杰. 模拟α-高放废液独居石磷酸盐玻璃陶瓷固化体的研究[D]. 武汉: 中国地质大学, 2008.
3 Zhang Ruizhu, Zhao Junhua, et al. Synthesis of SrTiO3 by double-SHS for immobilization of high level radioactive waste[J]. Chin J Raremet, 2009,33(1):66(in Chinese).
张瑞珠, 赵军华, 郭志猛. 二次自蔓延高温合成SrTiO3固化高放废物[J]. 稀有金属, 2009,33(1):66.
4 He Yong. Properties of mineral hosts for high-level nuclear waste(HLW)[J]. Geological Sci Technol Inf, 2006,19(3):73(in Chinese).
何涌. 高放射性废物矿物固化体的特性[J]. 地质科技情报, 2006,19(3):73.
5 罗上庚. 放射性废物处置预处理[M]. 北京:中国环境科学出版社, 2007.
6 Ke Changfeng. Fundamental research on vetrification of simulated radioactive waste with Pu[D]. Hefei: National University of Defense Technology, 2006(in Chinese).
柯昌凤. 模拟含Pu放射性废物玻璃固化的基础研究[D]. 合肥:国防科技大学, 2006.
7 Liao Changzhong, Shi Minkai. Immobilization of zironolite-based glass-ceramics and investigation on analogue of actinides[J]. World Nuclear Geoscience, 2014,33(1):65(in Chinese).
廖长忠, 施凯闵. 钙钛锆石基玻璃陶瓷固化锕系核素模拟物的研究[J]. 世界核地质科学, 2014,33(1):65.
8 Jae Han Cho, Yujin Eom,et al. Stablization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes[J]. J Hazard Mater, 2014,278:474.
9 Daniel Véras Ribeiro, Marcio Raymundo Morelli. Influence of the addition of grinding dust to a magnesium phosphate cement matrix[J]. Constr Build Mater, 2009,23:3094.
10Irene Buj, Josep Torras, et al. Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals[J]. J Hazard Mater, 2010,175:789.
11Covill A, Hyatt N C, et al. Development of magnesium phosphate cements for encapsulation of radioactive waste[J]. Adv Appl Ceram, 2011,3:111.
12Singh D, Mandalika V R.Magnesium potassium phosphate ceramic for 99Tc immpbilization[J]. J Nucl Mater, 2006,348:272.
13Ma Baoguo, Wang Jingran, et al. Effect of heavy metals and leaching toxicity of magnesium potassium phosphate cement[J]. Appl Mech Mater, 2011,117:1080.
14 Vinokurov S E, Kulyako Y M, et al. Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices[J]. J Nuc Mater, 2009,385:189.
15Rehab O. Abdel Rahman. Ravil Z. Rakhimov. Cementitious materials for nuclear waste immobilization[M]. Pondicherry: Spi Publis-her Services, 2014.
16Li Pingguang. Study on solidification technology of simulated radioa-ctive nuclide in borosilicate glass and glass-ceramic systems[D]. Hangzhou: Zhejiang University, 2013(in Chinese).
李平广. 模拟核素的硼硅酸盐玻璃及玻璃陶瓷固化技术研究[D]. 杭州:浙江大学, 2013.
17Lai Zhenyu, Qian Jueshi, et al. Effects of different temperature treatments to properties of magnesium phosphate cement[J]. J Funct Mater, 2015,15(43):2065(in Chinese).
赖振宇, 钱觉时,等. 不同温度处理对磷酸镁水泥性能的影响[J]. 功能材料, 2015,15(43):2065.
18Lai Zhenyu. Immobilization of medium and low level radioactive wastes by magnesium phosphate cement[D]. Chongqing: Chongqing University, 2012(in Chinese).
赖振宇. 磷酸镁水泥固化中低放射性废物研究[D]. 重庆:重庆大学, 2012.
19Huang Chencheng. Solidfication simulated high Level liquid waste by magnesium phosphate cement[D]. Mianyang: Southwest University of Science and Technology, 2016(in Chinese).
黄陈程. 磷酸镁水泥固化模拟高放废液[D]. 绵阳:西南科技大学, 2016.
[1] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[2] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[3] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[4] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[5] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[6] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[7] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[8] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[9] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[10] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[11] 李爽, 黄明, 崔明娟, 胡鑫杭, 许凯, 姜启武. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究[J]. 材料导报, 2024, 38(20): 23040018-8.
[12] 刘佳杰, 后振中, 杨庆浩, 赵秋丽. 加成型液体硅橡胶的研究及应用进展[J]. 材料导报, 2024, 38(20): 23050199-7.
[13] 郝舒琪, 苏海军, 赵迪, 李翔, 董栋, 于佳俊. 粉体特性对光固化3D打印陶瓷浆料性质影响的研究进展[J]. 材料导报, 2024, 38(17): 23060075-10.
[14] 刘雄飞, 王楠, 郝逸飞, 李辉. 磷酸镁水泥基帆布力学与微观性能研究[J]. 材料导报, 2024, 38(17): 23090003-6.
[15] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed