Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 102-108    https://doi.org/10.11896/j.issn.1005-023X.2017.018.021
  材料研究 |
纳米SiC与PI填充改性PTFE复合材料的摩擦磨损性能*
米翔1, 龚俊1, 曹文翰1, 王宏刚2, 任俊芳2
1 兰州理工大学机电工程学院,兰州 730050;
2 中国科学院兰州化学物理研究所固体润滑国家重点实验室,兰州 730000
Tribological Behavior of Nano-SiC/PI Reinforced PTFE Composites
MI Xiang1, GONG Jun1, CAO Wenhan1, WANG Honggang2, REN Junfang2
1 School of Mechanical & Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050;
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
下载:  全 文 ( PDF ) ( 2718KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以纳米碳化硅(Nano-SiC)和聚酰亚胺(PI)为填料,经过机械共混、冷压成型和烧结等工艺制备Nano-SiC与PI共同填充改性聚四氟乙烯(PTFE)复合材料。利用MRH-3型环-块摩擦实验机研究不同实验条件下复合材料的摩擦磨损性能并记录磨损表面温度变化。通过扫描电镜观察试样磨损表面和转移膜形貌,分析其磨损机理。结果表明:纳米粒子含量、载荷和速度的变化会引起磨损表面温度发生变化,影响复合材料的摩擦磨损特性,复合材料磨损表面形貌和转移膜形貌也随之改变;随着纳米粒子含量增加,摩擦温升更快进入平稳阶段,有利于降低复合材料的磨损率;载荷由100 N增加至400 N,速度由1 m/s增加至4 m/s时,复合材料的摩擦磨损特性大幅下降,磨损表面形貌和转移膜形貌有显著变化,重载和高速条件下复合材料的磨损率高;环境温度在室温到135 ℃变化时复合材料的摩擦性能变化不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
米翔
龚俊
曹文翰
王宏刚
任俊芳
关键词:  纳米碳化硅  聚酰亚胺  聚四氟乙烯  摩擦磨损性能  转移膜  温度    
Abstract: Nanometer SiC(Nano-SiC)particles and polyimide (PI) synergetic filled polytetrafluoroethylene (PTFE) compo-sites were prepared by high speed mechanical mixer, cold press molding and sintering with temperature control program. The tribological behavior of composites and the worn surface temperature was tested by a MRH-3 block-on-ring friction and wear tester under different conditions. The worn surface and transfer film were inspected and analyzed with scanning electronic microscopy (SEM). The results demonstrated that the change of the worn surface temperature, the tribological behavior, the worn surface morphology and the transfer film of composites related to the content of nano-SiC, load and sliding velocity. With the increase content of nano-particles, the friction temperature rose more quickly into the steady stage, which was helpful to reduce the wear rate of the compo-site. When the load increased from 100 N to 400 N and the velocity increased from 1 m/s to 4 m/s, the tribological behavior of composites deteriorated quickly, the surface morphology and the transfer film changed significantly. The wear rate of the composites under heavy and high velocity conditions was high. The change of tribological behavior are not obvious within the ambient temperature to 135 ℃.
Key words:  nanometer SiC    polyimide    polytetrafluoroethylene    tribological behavior    transfer film    temperature
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51165022)
通讯作者:  龚俊:通讯作者,男,1963年生,硕士,研究员,研究方向为斯特林发动机密封技术 E-mail:gongjjdxy@sohu.com   
作者简介:  米翔:男,1990年生,硕士研究生,研究方向为密封材料 E-mail:mix349189060@163.com
引用本文:    
米翔, 龚俊, 曹文翰, 王宏刚, 任俊芳. 纳米SiC与PI填充改性PTFE复合材料的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(18): 102-108.
MI Xiang, GONG Jun, CAO Wenhan, WANG Honggang, REN Junfang. Tribological Behavior of Nano-SiC/PI Reinforced PTFE Composites. Materials Reports, 2017, 31(18): 102-108.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.021  或          https://www.mater-rep.com/CN/Y2017/V31/I18/102
1 Gao Gui. The reasearch on stirling engine piston rod sealing structure and materials [D]. Lanzhou: Lanzhou University of Technology, 2012(in Chinese).
高贵. 斯特林发动机活塞杆密封结构与材料研究[D]. 兰州:兰州理工大学, 2012.
2 金东寒. 斯特林发动机技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009.
3 Sawyer W G, Freudenberg K D, Bhimaraj P, et al. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles[J]. Wear, 2003,254(5-6):573.
4 Bijwe J, Sen S, Ghosh A. Influence of PTFE content in PEEK-PTFE blends on mechanical properties and tribo-performance in various wear modes[J]. Wear, 2005,258(10):1536.
5 Khare H S, Moore A C, Haidar D R, et al. Interrelated effects of temperature and environment on wear and tribochemistry of an ultralow wear PTFE composite[J]. J Phys Chem C, 2015,119(29):16518.
6 Ye J, Khare H S, Burris D L. Transfer film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite[J]. Wear, 2013,297(s1-2):1095.
7 Ye J, Moore A C, Burris D L. Transfer film tenacity: A case study using ultra-low-wear alumina-PTFE[J]. Tribol Lett, 2015,59(3):1.
8 Krick B A, Ewin J J, Mccumiskey E J. Tribofilm formation and run-in behavior in ultra-low-wearing polytetrafluoroethylene (PTFE) and alumina nanocomposites[J]. Tribol Trans, 2014,57(6):1058.
9 Burris D L, Sawyer W G. Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes[J]. Tribol Trans, 2005,48(2):147.
10Pitenis A A, Harris K L, Junk C P, et al. Ultralow wear PTFE and alumina composites: It is all about tribochemistry[J]. Tribol Lett, 2015,57(2):1.
11Lai S, Yue L, Li T, et al. An investigation of friction and wear behaviors of polyimide/attapulgite hybrid materials[J]. Macromol Mater Eng, 2005,290(3):195.
12Zheng F, Zhang X, Zhao G, et al. Friction and wear of fiber reinforced polyimide composites in electron or proton irradiation[J]. J Appl Polym Sci, 2014,131(18):9327.
13Mu L, Zhu J, Fan J, et al. Self-lubricating polytetrafluoroethylene/polyimide blends reinforced with zinc oxide nanoparticles[J]. J Nanomater, 2015,2015:1.
14Urueña J M, Pitenis A A, Harris K L, et al. Evolution and wear of fluoropolymer transfer films[J]. Tribol Lett, 2015,57(1):9.
15Ye J, Khare H S, Burris D L. Quantitative characterization of solid lubricant transfer film quality[J]. Wear, 2014,316(1-2):133.
16Wang Q H, Xu J, Shen W, et al. The effect of nanometer SiC filler on the tribological behavior of PEEK[J]. Wear, 1997,209(1-2):316.
17Zhang G, Chang L, Schlarb A K. The roles of nano-SiO2 particles on the tribological behavior of short carbon fiber reinforced PEEK[J]. Compos Sci Technol, 2009,69(7):1029.
18Wang J, Hu X G, Tian M, et al. Study on mechanical and tribological property of nanometer ZrO2-filled polyoxymethylene composites[J]. Polymer-Plastics Technol Eng, 2007,46(5):469.
19Yang Dongya, Wang Yue, Gong Jun, et al. Tribological perfor-mance of different nanoparticles reinforced PPS-PTFE blends[J]. J Funct Mater, 2014(6):6011(in Chinese).
杨东亚, 王月, 龚俊, 等. 不同纳米填料增强PPS-PTFE共混物的摩擦磨损性能分析[J]. 功能材料, 2014(6):6011.
20Lu Qin, Zhang Jing, He Chunxia. Frictional and mechanical properties of PTFE composites filled with nano-SiC[J]. J Mater Sci Eng, 2008,26(5):743(in Chinese).
路琴, 张静, 何春霞. 纳米SiC改性PTFE复合材料的力学与摩擦磨损性能[J]. 材料科学与工程学报, 2008,26(5):743.
21Yang Dongya, Dong Yue, Gong Jun. The tribology behaviors of PEEK filled PTFE composites [J]. Lubricat Eng, 2013, 38(10):60(in Chinese).
杨东亚, 董悦, 龚俊. 聚醚醚酮填充聚四氟乙烯摩擦学性能[J]. 润滑与密封, 2013,38(10):60.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[3] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[4] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[5] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[6] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[7] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[8] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[9] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[10] 张伟杰, 盛广侠, 王兰心, 王赟程, 王立国, 刘志勇, 蒋金洋, 张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述[J]. 材料导报, 2024, 38(22): 23080140-18.
[11] 侯圣举, 李树国, 何超, 陈扬, 但建明, 周阳, 李相国, 吕阳. 再生微粉-电石渣制备硅酸盐水泥熟料及其水化性能研究[J]. 材料导报, 2024, 38(22): 23120044-6.
[12] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[13] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[14] 郭丁萌, 李晓玉, 孙天懿, 连海兰. 热敏型碳点作为温度传感材料的研究进展[J]. 材料导报, 2024, 38(18): 23040116-11.
[15] 郑志军, 郑翔. 基于激光重熔的SLM成形316L不锈钢温度场仿真及工艺优化[J]. 材料导报, 2024, 38(17): 23030304-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed