Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24080074-6    https://doi.org/10.11896/cldb.24080074
  金属与金属基复合材料 |
单级时效对喷射沉积7055铝合金疲劳性能和析出相的影响
郭洪飞, 邬佳芳, 侯小虎*, 赵敏, 曾超
内蒙古工业大学材料科学与工程学院,呼和浩特 010051
Effect of Single-stage Aging on Precipitates and Fatigue Properties of Spray-deposited 7055 Aluminum Alloy
GUO Hongfei, WU Jiafang, HOU Xiaohu*, ZHAO Min, ZENG Chao
College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
下载:  全 文 ( PDF ) ( 20789KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 喷射沉积7055铝合金因其轻质、高强度、良好的耐腐蚀性和韧性而被广泛用于航空航天和国防领域。随着科学技术的发展,对铝合金的综合性能特别是疲劳性能的要求也越来越高,材料在长期应变和交变载荷的作用下,长时间的积累损伤最终会导致材料断裂。为改善疲劳失效,研究不同热处理工艺对合金的影响,进而提高合金的应用性能。本工作分析了喷射沉积7055铝合金在欠时效(120 ℃×1 h)、峰时效(120 ℃×10 h)与过时效(120 ℃×44 h)三种状态下的显微组织、析出相疲劳断口形貌。结果表明:三种时效态合金在应力水平300 MPa下,过时效态合金表现出了更好的疲劳性能,疲劳寿命为22.2万次;随着时效时间的延长,基体中的析出相明显粗化长大,析出相由GP区和η′相向η′相和η相演化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭洪飞
邬佳芳
侯小虎
赵敏
曾超
关键词:  7055铝合金  疲劳性能  析出相  时效态    
Abstract: Spray deposited 7055 aluminum alloy is widely used in aerospace and defense fields due to its light weight, high strength, good corrosion resistance and toughness. With the development of science and technology, there is a higer requirement for the comprehensive properties of aluminum alloys, especially for fatigue properties. Under the action of long-term strain and alternating load, long-term accumulation of damage will eventually leads to material fracture. In order to improve the fatigue failure, it is necessary to study the influence of different heat treatment processes on the alloy to improve the application performance of the alloy. The microstructure and precipitated phase fatigue fracture morphology of spray deposited 7055 aluminum alloy under three states of under-aging ( 120 ℃×1 h ), peak-aging ( 120 ℃×10 h ) and over-aging ( 120 ℃×44 h ) were analyzed here. The results show that the three aged alloys are under the stress amplitude of 300 MPa. The over-aged alloy shows better fatigue performance, and the fatigue life is 222 000 times. With the extension of aging time, the precipitated phase in the matrix obviously coarsens and grows, and the precipitated phase evolves from GP zone and η′ phase to η′ phase and η phase.
Key words:  7055 aluminum alloy    fatigue fracture    precipitated phase    aging state
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TG166  
基金资助: 内蒙古自治区自然科学基金(2023LHMS01013);内蒙古自治区重点研发项目(2023YFJM0007);中央高校基本科研业务费专项资金(21623219);内蒙古自治区直属高校基本科研业务费项目(JY20220144;JY20240046)
通讯作者:  *侯小虎,博士,正高级实验师,硕士研究生导师。现就职于内蒙古工业大学实验管理中心(测试中心)分析测试室,目前主要从事铝合金强化机理研究研究方向、铝合金沉淀相应力、应变场研究,高熵合金析出相应变场研究、铝硅合金组织与热疲劳性能研究。houxiaohuhu@163.com   
作者简介:  郭洪飞,教授,博士研究生导师,内蒙古工业大学副校长。目前主要从事智能制造、材料加工、军民融合等研究工作。
引用本文:    
郭洪飞, 邬佳芳, 侯小虎, 赵敏, 曾超. 单级时效对喷射沉积7055铝合金疲劳性能和析出相的影响[J]. 材料导报, 2025, 39(21): 24080074-6.
GUO Hongfei, WU Jiafang, HOU Xiaohu, ZHAO Min, ZENG Chao. Effect of Single-stage Aging on Precipitates and Fatigue Properties of Spray-deposited 7055 Aluminum Alloy. Materials Reports, 2025, 39(21): 24080074-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080074  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24080074
1 Li Y, Lu B, Yu W, et al. Journal of Alloys and Compounds, 2021, 882, 160789.
2 Tang J, Zhang H, Teng J, et al. Journal of Alloys and Compounds, 2019, 806, 1081.
3 He Z H, Guo H F, Wang K S, et al. Hot Working Process, 2019, 48(14), 178(in Chinese).
何智慧, 郭洪飞, 王克山等. 热加工工艺, 2019, 48(14), 178.
4 Ma S C, Zhao Y, Pu J H, et al. Journal of Manufacturing Processes, 2019, 46, 304.
5 Zhao M, Guo H F, Hou X H, et, al. Material Guide, 2024, 38(17), 100(in Chinese).
赵敏, 郭洪飞, 侯小虎, 等. 材料导报, 2024, 38(17), 100.
6 Zhang Q, Hu Y, Wang J, et al. Journal of Magnesium and Alloys, 2023, 11(1), 192.
7 Zhang P, Li Y Y, Liu Y, et al. Vacuum, 2019, 171(c), 109005.
8 Liang B, Wu S, Guo H F, et al. Hot Working Process, 2020, 49(4), 18(in Chinese).
梁波, 武松, 郭洪飞等. 热加工工艺, 2020, 49(4), 18.
9 Li Y, Deng Y L, Fan S T, et al. Journal of Alloys and Compounds, 2020, 829, 154612.
10 Chen Z G, Yuan Z G, Ren J K. Journal of Alloys and Compounds, 2020, 8(28), 154446.
11 Shan C J, Liu S D, Zhang X M. Rare Metal Materials and Engineering, 2021, 50(5), 1808(in Chinese).
单朝军, 刘胜胆, 张新明. 稀有金属材料与工程, 2021, 50(5), 1807.
12 Zhang Q, Zhu Y M, Gao X, et al. Nature Communications, 2020, 11(1), 5198.
13 Zhou H, Zhang Z. Material Engineering, 2019, 47(3), 137(in Chinese).
周航, 张峥. 材料工程, 2019, 47(3), 137.
14 Yu M, Zhang Y, Li X, et al. . MateriLetters, 2020, 2(75), 128074.
15 Wang Y, Tang J G, Deng Y L. Journal of Central South University(Natural Science Edition), 2018, 49(11), 2671(in Chinese).
王勇, 唐建国, 邓运来. 中南大学学报(自然科学版), 2018, 49(11), 2671.
16 Zhang J H. Effect of aging process on microstructure and fatigue properties of 7N01 aluminum alloy. Ph. D. Thesis, Harbin Polytechnic Institute, China, 2020(in Chinese).
张健辉. 时效工艺对7N01铝合金显微组织和疲劳性能的影响. 博士学位论文, 哈尔滨工业大学, 2020.
17 Sharma V, Kumar K S, Rao B N, et al. Materials Science and Enginee-ring A, 2011, 528(12), 4040.
18 Antunes A M B S, Baptista C A R P, Barboza M J R, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(8), 1.
19 Cheng Y J, Leng L, Gong B S, et al. Journal of Material Heat Treatment, 2021, 42(5), 28 (in Chinese).
程亚军, 冷利, 宫柏山, 等. 材料热处理学报, 2021, 42(5), 27.
20 Zheng Z Q, Chen Y Y, Zhong L P. Chinese Journal of Nonferrous Metals, 2010(1), 37(in Chinese).
郑子樵, 陈圆圆, 钟利萍. 中国有色金属学报, 2010(1), 37.
21 Kai W, Xiong B, Zhang Y, et al. Materials Science & Engineering A, 2018, 716, 42.
22 Wang Y L, Pan Q L, Wei L L, et al. Materials & Design, 2014, 55(c), 857.
23 Ma G X. Effect of solid solution process on microstructure and properties of spray deposited 7055 aluminum alloy extruded bar. Master’s Thesis, Inner Mongolia University of Technology, China, 2011 (in Chinese).
马国喜. 固溶工艺对喷射沉积7055铝合金挤压棒材组织性能的影响. 硕士研究生论文, 内蒙古工业大学, 2021.
24 Guo H F, Gao W H, Hao X, et al. Heat Treatment of Metals, 2009, 34(2), 44 (in Chinese).
郭洪飞, 高文海, 郝新等. 金属热处理, 2009, 34(2), 45.
25 Sadananda K, Adlakha I, Solanki K N, et al. Crystals, 2020, 10(5), 358.
26 Yuan D L, Chen S Y, Chen K H, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(8), 2220.
27 Liu L L, Pan Q L, Wang X D, et al. Journal of Alloys and Compounds, 2018, 735, 261.
[1] 郭幼丹, 程晓农. SAF2507双相不锈钢二次急冷淬火成形析出相的析出行为[J]. 材料导报, 2025, 39(9): 23100100-7.
[2] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[3] 凡涛涛, 韩松凯, 司春棣. 紫外老化对硫酸钙晶须改性沥青疲劳性能的影响[J]. 材料导报, 2025, 39(11): 24040015-6.
[4] 吕润涛, 周张健, 白冰, 杨文. 耐老化马氏体时效不锈钢纳米析出相和逆变奥氏体调控研究进展[J]. 材料导报, 2024, 38(4): 22120065-7.
[5] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[6] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[7] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[8] 高瑞泽, 王亚强, 张金钰, 杨红艳, 刘刚, 孙军. 梯度结构金属材料的制备方法和力学性能研究进展[J]. 材料导报, 2024, 38(15): 23040269-12.
[9] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[10] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[11] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[12] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[13] 张焯栋, 赵君文, 范军, 张海成, 高杰维, 韩瑞鹏. 缺口对7A85铝合金拉伸性能和疲劳性能的影响[J]. 材料导报, 2023, 37(24): 22080021-7.
[14] 曹宇, 白朴存, 刘飞, 侯小虎. 选区激光熔化IN718合金固溶过程成分均匀化规律的研究[J]. 材料导报, 2023, 37(21): 22040096-7.
[15] 温家馨, 李化建, 杨志强, 李子春, 黄法礼, 王振, 易忠来, 谢永江. 高速铁路无砟轨道混凝土动态性能及其评价方法综述[J]. 材料导报, 2023, 37(20): 22010181-10.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed