Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23020001-7    https://doi.org/10.11896/cldb.23020001
  高分子与聚合物基复合材料 |
贻贝仿生聚酚胺涂层固定REDV短肽促内皮化探究
魏嘉佳, 孟昊天, 李鹏程, 王文轩, 李梦茹, 涂秋芬*
西南交通大学材料科学与工程学院,材料先进技术教育部重点实验室,成都 610031
Exploration of Mussel Biomimetic Poly (Phenol-Amine) Coating to Immobilize REDV Peptide for Endothelial Promotion
WEI Jiajia, MENG Haotian, LI Pengcheng, WANG Wenxuan, LI Mengru, TU Qiufen*
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 33767KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 药物洗脱支架(DES)的发展显著降低了支架的再狭窄率,但引入的药物会不可避免地造成内皮层的损伤,从而影响病灶部位内皮屏障的完整性和功能性。结构完整及功能正常的血管内皮细胞层是维持血管组织稳态以及凝血系统平衡的重要保障。使用兼具优良血液相容性及促内皮化功能的涂层对支架进行预处理,是改善血管支架等心血管植入器械并发症的有效策略。本研究选用氧化剂高碘酸钠加速多巴胺自聚合,使其在支架材料表面快速形成聚酚胺涂层PDA,制备方法简单且省时;随后通过迈克尔加成反应点击接枝功能性短肽REDV,构建促内皮化涂层P-REDV,REDV肽接枝效率高且接枝密度大(9.84 ng/cm2)。该涂层在体外细胞培养实验中对内皮细胞粘附具有选择性促进作用,同时显示出优异的血液相容性,为解决药物洗脱支架及心血管植入器械延迟内皮化的问题提供了一种新的策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏嘉佳
孟昊天
李鹏程
王文轩
李梦茹
涂秋芬
关键词:  酚胺化学  点击接枝  促内皮化  血管支架  REDV    
Abstract: With the development of drug-eluting stents (DES), the rate restenosis of stents was reduced. However, the introduced drugs inevitably caused damage to the endothelial layer, thus affecting the integrity and functionality of the endothelial barrier at the lesion site. A structurally intact and functional vascular endothelial cell layer is essential for maintaining vascular tissue homeostasis as well as coagulation system homeostasis. The pre-treatment of stents with a pro-endothelialization coating that combines excellent hemocompatibility is an effective strategy to improve the complications of cardiovascular implantation devices such as stents. In this work, the oxidant sodium periodate was chosen to accelerate the self-polymerization of dopamine, which led to the rapid formation of poly(phenol-amine) coating PDA on the surface of the stent material. The preparation method was simple and time-saving. Subsequently, the functional short peptide REDV was immobilized by Michael addition reaction to construct a re-endothelialized P-REDV coating. REDV showed high grafting efficiency and large grafting density (9.84 ng/cm2). This coating also showed selective promotion of endothelial cell adhesion when tested in vitro assays, as well as excellent hemocompatibility. This provided a new strategy to address the problem of delayed endothelialization after drug-eluting stents and cardiovascular implantation devices.
Key words:  phenol-amine chemistry    click grafting    endothelial promotion    vascular stents    REDV
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  Q81  
基金资助: 四川省国际科技创新合作项目(2021YFH0056)
通讯作者:  *涂秋芬,西南交通大学医学院副教授,2007年毕业于四川大学获得博士学位,2007—2010年在西南交通大学从事博士后相关研究。研究方向包括生物材料表界面、血液接触类器械研发、氢分子医学等。tuqiufen@home.swjtu.edu.cn   
作者简介:  魏嘉佳,2020年6月于西南交通大学获得工学学士学位。2023年毕业于西南交通大学,获得生物医学工程专业硕士学位,在涂秋芬副教授和杨志禄研究员的指导下进行研究。目前主要研究领域为生物医用材料、心血管植入器械、止血材料等。
引用本文:    
魏嘉佳, 孟昊天, 李鹏程, 王文轩, 李梦茹, 涂秋芬. 贻贝仿生聚酚胺涂层固定REDV短肽促内皮化探究[J]. 材料导报, 2024, 38(13): 23020001-7.
WEI Jiajia, MENG Haotian, LI Pengcheng, WANG Wenxuan, LI Mengru, TU Qiufen. Exploration of Mussel Biomimetic Poly (Phenol-Amine) Coating to Immobilize REDV Peptide for Endothelial Promotion. Materials Reports, 2024, 38(13): 23020001-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020001  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23020001
1 Dr Salim Yusuf Dphil A, David Wood B, Johanna Ralston Mba C, et al. The Lancet, 2015, 386(9991), 399.
2 Gaidai O, Cao Y, Loginov S. Current Problems in Cardiology, 2023, 48(5), 101622.
3 Serruys P, Kutryk M, Ong A. The New England Journal of Medicine, 2006, 354(5), 483.
4 Morice M C, Serruys P W, Sousa E J. Acc Current Journal Review, 2002, 11(5), 61.
5 Kozlik M, Harpula J, Chuchra P J, et al. Biomimetics (Basel), 2023, 8(1), 16.
6 Ryan J, Linde-Zwirble W, Engelhart L, et al. Circulation, 2009, 119(7), 952.
7 Stone G W, Ellis S G, Cox D A. Acc Current Journal Review, 2004, 39(5), 1142.
8 Robert A, Nikolaus S, Adnan K, et al. Drug Safety, 2009, 32(9), 749.
9 Rogers C, Tseng D Y, Squire J C, et al. Circulation Research, 1999, 84(4), 378.
10 Hong S J, Hong M K. Expert Opin Drug Deliv, 2022, 19(3), 269.
11 Kaare H, Jan M, Rune W, et al. New England Journal of Medicine, 2016, 3(11), 6.
12 Otsuka F, Vorpahl M, Nakano M, et al. Circulation, 2014, 129(2), 211.
13 Heleen M M, Van B, Deirdre M W, et al. Journal of the American College of Cardiology, 1998, 32(4), 1109.
14 Vanhoutte P. Asia-Pacific Cardiology, 2008, 2(1), 64.
15 Hanspeter B, John R C, John D, et al. Journal of Hypertension, 2005, 23(2), 233.
16 Hassan S, Ali M N, Ghafoor B. Journal of Cardiothoracic Surgery, 2022, 17(1), 65.
17 Ross Russell. The New England Journal of Medicine,2013, 340(2), 115.
18 Chang H, Hu M, Zhang H, et al. American Chemical Society Applied Materials & Interfaces, 2016, 8(23), 66.
19 Lin Q K, Ding X, Qiu F Y, et al. Biomaterials, 2010, 31(14), 4017.
20 Wang J L, Li B C, Li Z J, et al. Biomaterials, 2014, 35(27), 7679.
21 Wei Y, Ji Y, Xiao L L, et al. Biomaterials, 2013, 34(11), 2588.
22 Humphries J M. The Journal of Cell Biology, 1986, 103(6), 2637.
23 Hubbell J A, Massia S P, Desai N P, et al. Biotechnology, 1991, 9(6), 568.
24 Massia S P, Hubbell J A. Journal of Biological Chemistry, 1992, 267(14), 10133.
25 Zhang B, Qin Y, Wang Y. Biomaterials, 2022, 284, 121478.
26 Seeto J W, Tian Y, Lipke E A, et al. Acta Biomaterialia, 2013, 9(9), 8279.
27 Mahara A, Kitagawa K, Otaka A, et al. Materials Science and Enginee-ring:C, 2021, 129, 112381.
28 Wei Y, Ji Y, Xiao L L, et al. Colloids & Surfaces B Biointerfaces, 2011, 84(2), 369.
29 Rodriguez N, Das S, Kaufman Y, et al. Biofouling, 2015, 31(1-2), 221.
30 Feinberg H, Hanks T W. Polymer International, 2022, 71(5), 578.
31 Lee H, Lee B P, Messersmith P B. Nature, 2007, 448(7151), 338.
32 Hemmatpour H, Luca O D, Crestani D, et al. Nature Communications, 2023, 14(1), 664.
33 Lee S H. Advanced Materials Interfaces, 2016, 3(11), 6.
34 Ku S H, Park C B. Biomaterials, 2010, 31(36), 9431.
35 Kim S I, Lee J S, Ahn H J, et al. American Chemical Society Applied Materials & Interfaces, 2013. 5(2), 8.
36 Jeon J R, Kim J H, Chang Y S. Journal of Materials Chemistry B, 2013, 1(47), 6501.
37 Yang H C, Waldman R Z, Wu M B, et al. Advanced Functional Materials, 2018, 28(8), 1870052.
38 Massia P S. The Journal of Cell Biology, 1991, 114(5), 1089.
39 Li L, Yang L, Liao Y, et al. Chemical Engineering Journal, 2020, 402, 126196.
[1] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[2] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[3] 赵国行, 陈桂, 李星辉, 袁志山, 马连彩, 张宝祥. 逆式组合结构镍钛血管支架的径向支撑性能有限元研究[J]. 材料导报, 2019, 33(18): 3050-3056.
[4] 杨立, 罗日方, 雷洋, 王云兵. 微创介入全降解血管支架和心脏瓣膜国内外研发现状与研究前沿[J]. 材料导报, 2019, 33(1): 40-47.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed