Exploration of Mussel Biomimetic Poly (Phenol-Amine) Coating to Immobilize REDV Peptide for Endothelial Promotion
WEI Jiajia, MENG Haotian, LI Pengcheng, WANG Wenxuan, LI Mengru, TU Qiufen*
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Abstract: With the development of drug-eluting stents (DES), the rate restenosis of stents was reduced. However, the introduced drugs inevitably caused damage to the endothelial layer, thus affecting the integrity and functionality of the endothelial barrier at the lesion site. A structurally intact and functional vascular endothelial cell layer is essential for maintaining vascular tissue homeostasis as well as coagulation system homeostasis. The pre-treatment of stents with a pro-endothelialization coating that combines excellent hemocompatibility is an effective strategy to improve the complications of cardiovascular implantation devices such as stents. In this work, the oxidant sodium periodate was chosen to accelerate the self-polymerization of dopamine, which led to the rapid formation of poly(phenol-amine) coating PDA on the surface of the stent material. The preparation method was simple and time-saving. Subsequently, the functional short peptide REDV was immobilized by Michael addition reaction to construct a re-endothelialized P-REDV coating. REDV showed high grafting efficiency and large grafting density (9.84 ng/cm2). This coating also showed selective promotion of endothelial cell adhesion when tested in vitro assays, as well as excellent hemocompatibility. This provided a new strategy to address the problem of delayed endothelialization after drug-eluting stents and cardiovascular implantation devices.
1 Dr Salim Yusuf Dphil A, David Wood B, Johanna Ralston Mba C, et al. The Lancet, 2015, 386(9991), 399. 2 Gaidai O, Cao Y, Loginov S. Current Problems in Cardiology, 2023, 48(5), 101622. 3 Serruys P, Kutryk M, Ong A. The New England Journal of Medicine, 2006, 354(5), 483. 4 Morice M C, Serruys P W, Sousa E J. Acc Current Journal Review, 2002, 11(5), 61. 5 Kozlik M, Harpula J, Chuchra P J, et al. Biomimetics (Basel), 2023, 8(1), 16. 6 Ryan J, Linde-Zwirble W, Engelhart L, et al. Circulation, 2009, 119(7), 952. 7 Stone G W, Ellis S G, Cox D A. Acc Current Journal Review, 2004, 39(5), 1142. 8 Robert A, Nikolaus S, Adnan K, et al. Drug Safety, 2009, 32(9), 749. 9 Rogers C, Tseng D Y, Squire J C, et al. Circulation Research, 1999, 84(4), 378. 10 Hong S J, Hong M K. Expert Opin Drug Deliv, 2022, 19(3), 269. 11 Kaare H, Jan M, Rune W, et al. New England Journal of Medicine, 2016, 3(11), 6. 12 Otsuka F, Vorpahl M, Nakano M, et al. Circulation, 2014, 129(2), 211. 13 Heleen M M, Van B, Deirdre M W, et al. Journal of the American College of Cardiology, 1998, 32(4), 1109. 14 Vanhoutte P. Asia-Pacific Cardiology, 2008, 2(1), 64. 15 Hanspeter B, John R C, John D, et al. Journal of Hypertension, 2005, 23(2), 233. 16 Hassan S, Ali M N, Ghafoor B. Journal of Cardiothoracic Surgery, 2022, 17(1), 65. 17 Ross Russell. The New England Journal of Medicine,2013, 340(2), 115. 18 Chang H, Hu M, Zhang H, et al. American Chemical Society Applied Materials & Interfaces, 2016, 8(23), 66. 19 Lin Q K, Ding X, Qiu F Y, et al. Biomaterials, 2010, 31(14), 4017. 20 Wang J L, Li B C, Li Z J, et al. Biomaterials, 2014, 35(27), 7679. 21 Wei Y, Ji Y, Xiao L L, et al. Biomaterials, 2013, 34(11), 2588. 22 Humphries J M. The Journal of Cell Biology, 1986, 103(6), 2637. 23 Hubbell J A, Massia S P, Desai N P, et al. Biotechnology, 1991, 9(6), 568. 24 Massia S P, Hubbell J A. Journal of Biological Chemistry, 1992, 267(14), 10133. 25 Zhang B, Qin Y, Wang Y. Biomaterials, 2022, 284, 121478. 26 Seeto J W, Tian Y, Lipke E A, et al. Acta Biomaterialia, 2013, 9(9), 8279. 27 Mahara A, Kitagawa K, Otaka A, et al. Materials Science and Enginee-ring:C, 2021, 129, 112381. 28 Wei Y, Ji Y, Xiao L L, et al. Colloids & Surfaces B Biointerfaces, 2011, 84(2), 369. 29 Rodriguez N, Das S, Kaufman Y, et al. Biofouling, 2015, 31(1-2), 221. 30 Feinberg H, Hanks T W. Polymer International, 2022, 71(5), 578. 31 Lee H, Lee B P, Messersmith P B. Nature, 2007, 448(7151), 338. 32 Hemmatpour H, Luca O D, Crestani D, et al. Nature Communications, 2023, 14(1), 664. 33 Lee S H. Advanced Materials Interfaces, 2016, 3(11), 6. 34 Ku S H, Park C B. Biomaterials, 2010, 31(36), 9431. 35 Kim S I, Lee J S, Ahn H J, et al. American Chemical Society Applied Materials & Interfaces, 2013. 5(2), 8. 36 Jeon J R, Kim J H, Chang Y S. Journal of Materials Chemistry B, 2013, 1(47), 6501. 37 Yang H C, Waldman R Z, Wu M B, et al. Advanced Functional Materials, 2018, 28(8), 1870052. 38 Massia P S. The Journal of Cell Biology, 1991, 114(5), 1089. 39 Li L, Yang L, Liao Y, et al. Chemical Engineering Journal, 2020, 402, 126196.