Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22030153-8    https://doi.org/10.11896/cldb.22030153
  金属与金属基复合材料 |
921A高强碳素钢在天然流动海水中的腐蚀行为
姜万珩1, 张奇亮1, 牛璐2, 刘梁1, 黄一1,3, 徐云泽1,3,*
1 大连理工大学船舶工程学院,辽宁 大连 116024
2 中国船舶工业集团公司第七○八研究所,上海 200011
3 大连理工大学工业装备结构分析国家重点实验室,辽宁 大连 116024
Corrosion Behavior of 921A High Strength Carbon Steel in Flowing Natural Seawater
JIANG Wanheng1, ZHANG Qiliang1, NIU Lu2, LIU Liang1, HUANG Yi1,3, XU Yunze1,3,*
1 School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
2 Marine Design & Research Institute of China, Shanghai 200011, China
3 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 9141KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 921A碳素钢作为海洋工程用高强钢,被广泛应用于水下海洋装备的建造。921A钢在服役期间内会遭受恶劣海洋环境以及复杂流场作用,其在流动海水中的腐蚀行为是影响水下海洋装备安全运行的重要因素。为了明晰921A钢在流动海水中的腐蚀规律,利用射流喷射系统研究了海洋工程用921A高强碳素钢在不同流速(1~8 m/s)天然海水中的腐蚀行为,并结合电化学测量、微观形貌分析和计算流体力学(CFD)仿真分析了海水中流场、传质和锈层分布对921A钢腐蚀行为的交互影响机制。实验结果表明,随着海水流速从1~3 m/s升高至5~8 m/s,钢材的腐蚀损伤形貌由“流痕”转变为点蚀,海水流速增加会导致更为致密的球状锈层形成。921A钢在流动海水中的腐蚀行为受到流速、传质、壁面切应力、正应力和锈层的协同作用,锈层积累和局部腐蚀更倾向于出现在同时具有低流速、低切应力和高正应力、高传质速率特征的区域。高流速下正应力和切应力的大幅升高是导致致密锈层和点蚀形成的重要原因。921A钢的腐蚀速率在浸泡初期受活性溶解区域的发展控制,实验后期传质和锈层成为影响921A钢腐蚀速率的主要因素。在下一步工作中,将继续围绕流动海水中碳钢材料表面不同形貌锈层的形成机制与局部腐蚀发展规律开展研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜万珩
张奇亮
牛璐
刘梁
黄一
徐云泽
关键词:  921A钢  天然海水  流速  锈层  点蚀  CFD    
Abstract: The 921A carbon steel is widely used to construct the underwater naval equipment due to its high strength. It is always subjected to harsh marine environment and complex flow conditions in its service life. The corrosion performance of 921A steel in the flowing seawater is an important factor which directly influence the safety operation of the underwater naval equipment. In order to clarify the corrosion behavior of 921A steel in flowing seawater, the corrosion performance of 921A steel in the flowing natural seawater of different flow velocities (1—8 m/s) was studied using immerged jet rig system. The influences of the flow field, mass transfer and rust layer on the corrosion behavior of 921A steel in seawater were studied using electrochemical measurement in conjunction with corrosion morphology characterization and CFD simulation. Results showed that the corrosion morphology would change from “flow mark” to pitting damage along with the flow velocity increasing from 1—3 m/s to 5—8 m/s. The increase of the flow velocity of seawater could lead to the formation of rust layer composed by much denser crystals. The corrosion performance of 921A steel is influenced by the coupled effects of flow velocity, mass transfer, wall shear steel, normal stress and rust layer. The accumulation of rust layer and initiation of localized corrosion prefer to occur at the areas of low flow velocity, wall shear stress, but with high normal stress and high mass transfer. The dramatic increases of both normal stress and shear stress at high flow velocity is the main cause for the formation of dense rust layer and pitting damage. The corrosion rate of 921A steel is controlled by the propagation of active dissolved area at the initial immersion stage. However, the mass transfer and the rust layer become the main contributor to the corrosion rate of 921A steel at the end of the test. In future studies, the formation of the different type of rust layer and the propagation of localized corrosion in flowing seawater would be focused.
Key words:  921A steel    natural seawater    flow velocity    rust layer    pitting    CFD
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TG406  
基金资助: 国家自然科学基金(521001055);中央高校基本科研业务费(DUT21RC3093)
通讯作者:  *徐云泽,2019年4月博士毕业于大连理工大学船舶工程学院,现任大连理工大学船舶工程学院副教授,工业装备结构分析国家重点实验室固定成员。主要从事船舶与海洋结构物腐蚀损伤机理与监测技术研究。以第一作者/通信作者发表SCI论文26篇,授权发明专利5项。xuyunze123@163.com   
作者简介:  姜万珩,2021年6月本科毕业于江苏科技大学,现为大连理工大学船舶工程学院硕士研究生,师从黄一教授、徐云泽副教授。目前主要研究领域为海洋工程用钢冲刷腐蚀损伤机理与监测技术。
引用本文:    
姜万珩, 张奇亮, 牛璐, 刘梁, 黄一, 徐云泽. 921A高强碳素钢在天然流动海水中的腐蚀行为[J]. 材料导报, 2023, 37(18): 22030153-8.
JIANG Wanheng, ZHANG Qiliang, NIU Lu, LIU Liang, HUANG Yi, XU Yunze. Corrosion Behavior of 921A High Strength Carbon Steel in Flowing Natural Seawater. Materials Reports, 2023, 37(18): 22030153-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030153  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22030153
1 Ma H, Fan Y, Liu Z, et al. Ocean Engineering, 2019, 182, 188.
2 Xu Y, Zhou Q, Liu L, et al. Corrosion Engineering Science and Technology, 2020, 55(7), 579.
3 Robert E. Npj Materials Degradation. DOI:10.1038/S41529-018-0066-x.
4 Mohd A, Suzie S, Muhammad Z. Engineering Failure Analysis, 2020, 115, 104654.
5 López-Ortega A, Bayón R, Arana J. Surface & Coatings Technology, 2018, 349,1083.
6 Xu Y, Tan M. Corrosion Science, 2018, 139, 438.
7 Liu Y W, Zhang Y. Journal of Harbin Engineering University, 2021,42(1),145(in Chinese).
刘英伟,张洋.哈尔滨工程大学学报,2021,42(1),145.
8 Owen J, Godfrey J, Ma W, et al. Corrosion Science, 2020, 165, 108362.
9 Ahmed W, Bello M, Nakla M, et al. Nuclear Engineering and Design, 2012, 252, 52.
10 Choe S, Lee S. Ocean Engineering, 2017, 141,18.
11 Lin Z X, Dang Y, Xu Q, et al. Materials Reports, 2020, 34(Z2), 437(in Chinese).
林震霞,党莹,徐祺,等.材料导报, 2020, 34(Z2), 437.
12 Xu Y, Tan M. Corrosion Science, 2019, 151,163.
13 Liu L, Xu Y, Zhu Y, et al. Journal of the Electrochemical Society, 2020, 167,14.
14 Si X, Si H, Li M, et al. Materials and Corrosion, 2020, 71(10), 1637.
15 Zhang G, Zeng L, Huang H, et al. Corrosion Science, 2013, 77, 334.
16 Zhu Y S, Liu L, Xu Y Z, et al. Materials Reports, 2022, 36(1), 154 (in Chinese).
朱烨森,刘梁,徐云泽,等.材料导报, 2022, 36(1), 154.
17 Zou Y, Wang J, Bai Q, et al. Corrosion Science, 2012, 57,202.
18 Da H, Song S, Behnamian Y, et al. Journal of the Electrochemical Society, 2020, 167, 081507.
19 Xu Y, Zhang Q, Zhou Q, et al. Npj Materials Degradation, 2021, 5(1), 1.
20 Wang L, Wang X T. Journal of Safety and Environment, 2023(8), 2699 (in Chinese).
王琳,王欣婷.安全与环境学报, 2023(8), 2699.
21 Yin X, Meng Z B, Hu H. Materials Reports, 2021, 35(14), 14084 (in Chinese).
殷鑫,孟征兵,胡浩.材料导报, 2021, 35(14), 14084.
22 Zhang X Y, Wang L D, Sun W, et al. Materials Protection, 2021, 54(7), 30 (in Chinese).
张心宇,王立达,孙文,等.材料保护, 2021, 54(7), 30.
23 Wang X J, Xu Q L, Song Y S, et al. Journal of National University of Defense, 2021, 43(5), 160 (in Chinese).
王向军,徐庆林,宋玉苏,等.国防科技大学学报, 2021, 43(5), 160.
24 Li Z Q, Hu J Y, Qiu S W, et al. Development and Application of Mate-rials, 2018,33(6),46 (in Chinese).
李志强,胡靖元,邱胜闻,等.材料开发与应用,2018,33(6),46.
25 Farelas F, Galicia M, Brown B, et al. Corrosion Science, 2010,52,509.
26 Xu Y, Liu L, Xu C, et al. Journal of Solid State Electrochemistry, 2020, 24,1.
27 Morcillo M, Chico B, Alcántara J, et al. Journal of the Electrochemical Society, 2016, 163(8), C426.
28 Zhang Y, Reuterfors E, McLaury B, et al. Wear, 2007,263, 330.
[1] 王畅, 李安敏, 王晓东. 金属液测速技术的原理及研究进展[J]. 材料导报, 2023, 37(4): 21020076-7.
[2] 程尚华, 李方亮, 张一琪, 武少杰, 程方杰. 氮在不锈钢GMAW电弧中的过渡规律及对焊缝组织和性能的影响[J]. 材料导报, 2023, 37(18): 22020113-6.
[3] 许镇, 陈旋, 吴晓春. 回火工艺对含铜塑料模具钢在中性氯化钠溶液中腐蚀行为的影响[J]. 材料导报, 2022, 36(20): 21030169-8.
[4] 张肖飞, 马涛, 华晓春, 王孝义, 饶思贤. 高流速强湍流下低碳钢局部环烷酸腐蚀行为[J]. 材料导报, 2021, 35(14): 14136-14141.
[5] 林震霞, 党莹, 徐祺, 李丹. 690合金在核电厂一、二回路工况下的均匀腐蚀性能研究[J]. 材料导报, 2020, 34(Z2): 437-440.
[6] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[7] 谭騛, 宁兆祥, 许晓嫦, 任鹏禾, 陈广兴. 新型渣浆泵用材料的腐蚀性能研究[J]. 材料导报, 2019, 33(24): 4157-4163.
[8] 魏子易,安晓鹏,史才军,武斌,元强. 基于CFD模拟的新拌混凝土泵送压力损失预测[J]. 材料导报, 2019, 33(22): 3738-3743.
[9] 鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹. 410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(20): 3489-3493.
[10] 王毅飞, 谢发勤. 超级13Cr油管钢在不同浓度Cl-介质中的腐蚀行为[J]. 材料导报, 2018, 32(16): 2847-2851.
[11] 庞宗旭, 朱荣, 涂凯路, 唐天平, 张艺博. 含Ce2O3氧化物对改善双相不锈钢亚稳态点蚀的机理研究*[J]. 《材料导报》期刊社, 2017, 31(16): 81-88.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed