Research Progress of Strategic Minerals for High Performance Friction Materials
YU Kun1,2,3,4, SHANG Xi5, FU Liangjie1,2,3,4, ZUO Xiaochao1,2,3,4,*, YANG Huaming1,2,3,4,5,*
1 Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China 2 Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China 3 Key Laboratory of Functional Geomaterials in China, Nonmetallic Minerals Industry, Wuhan 430074, China 4 Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China 5 Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Abstract: Friction material is mainly used for braking/transmission of vehicles or power generating machines through friction processes. It is composed of three parts:reinforcing materials, adhesives, and fillers. The rapid development and innovation of transportation technology and the automobile industry have resulted in massive markets with enormous economic benefits. Traditional friction materials cannot meet the increasing user demands because of limited performance. Therefore, developing advanced friction materials with premium wear/high-temperature resistance and friction-stability becomes imminent. Due to the need for effective integration of multi properties, selecting starting materials for friction material is usually tricky. Among all the materials, strategic minerals stand out due to their natural abundance, excellent mechanical, thermal and tribological properties. Strategic minerals have become research hotspots nowadays because of the superb reinforcement/filler behaviors. In this article, we have briefly introduced the application and development of various strategic minerals for high-performance friction materials in recent years. Also, the latest progress of strategic minerals in mechanics, thermals, lubrication, noise reduction and tribology has been systematically summarized, and the mechanisms behind various modulation have been analyzed in conjunction with relevant theoretical models. Finally, deficiencies and problems of the current research have been pointed out, and the future recommendations and work focus of friction material design have been prospected.
1 Dong Y T, Yin X Y, Zhang Y F, et al. Acta Geoscientica Sinica, 2020, 42(2), 145 (in Chinese). 董延涛, 阴秀琦, 张艳飞, 等. 地球学报, 2020, 42(2), 145. 2 Chen Q S, Zhang Y F, Xing J Y, et al. Acta Geoscientica Sinica, 2020, 42(2), 137 (in Chinese). 陈其慎, 张艳飞, 邢佳韵, 等. 地球学报, 2020, 42(2), 137. 3 Liu X H. China Mining News, 2021(1), 11 (in Chinese). 刘晓慧. 中国矿业报, 2021(1), 11. 4 Zhao X G, Ouyang J, Zhang Y, et al. Materials Reports, 2019, 33(11), 1860 (in Chinese). 赵晓光, 欧阳静, 张毅, 等. 材料导报, 2019, 33(11), 1860. 5 Chen K W, Duan Y P. Modern Manufacturing Technology and Equipment, 2018(10), 111 (in Chinese). 陈克文, 段亚萍. 现代制造技术与装备, 2018(10), 111. 6 Li D K. Reform, 2020(1), 5 (in Chinese). 李稻葵. 改革, 2020(1), 5. 7 Wang D G, Yin J K, Zhu Z C, et al. Wear, 2020, 458, 203391. 8 Zhu R Y, Zhang P L, Yu Z S, et al. Surface & Coatings Technology, 2020, 383, 125248. 9 Hou K, Ouyang J, Zheng C, et al. Materials Express, 2017, 7(2), 104. 10 Zhao X G, Ouyang J, Tan Q, et al. Materials Express, 2020, 10(1), 70. 11 Fang Y X. Study on comprehensive properties of non-metal filler reinforced phenolic resin based friction materials. Master's Thesis, Chongqing Jiaotong University, China, 2019 (in Chinese). 方远兴. 非金属填料对酚醛树脂基摩擦材料的综合性能研究. 硕士学位论文, 重庆交通大学, 2019. 12 Binda F F, Oliveira V D, Fortulan C A, et al. Journal of Materials Research and Technology-Jmr&T, 2020, 9(3), 3378. 13 Yu J, He J, Ya C. Journal of Applied Polymer Science, 2011, 119(1), 275. 14 Wen G F, He R, Wang X F. et al. Powder Metallurgy Industry, 2020, 30(5), 45 (in Chinese). 文国富, 何锐, 王秀飞, 等. 粉末冶金工业, 2020, 30(5), 45. 15 Liu X S, Xu X F, Wang X F. et al. Powder Metallurgy Industry, 2021, 31(3), 18 (in Chinese). 刘喜双, 许雄飞, 王秀飞, 等. 粉末冶金工业, 2021, 31(3), 18. 16 Zhang F T. Powder Metallurgy Industry, 2018, 28(5), 41 (in Chinese). 张发厅. 粉末冶金工业, 2018, 28(5), 41. 17 Wang Y, Yan Q Z, Zhang X L, et al. Powder Metallurgy Industry, 2012, 30(6), 432 (in Chinese). 王晔, 燕青芝, 张肖路, 等. 粉末冶金技术, 2012, 30(6), 432. 18 Chen J, Yao P P, Sheng H C, et al. Hot Working Technology, 2006(7), 13 (in Chinese). 陈军, 姚萍屏, 盛洪超, 等. 热加工工艺, 2006(7), 13. 19 Xu Z Q, Yang Z R, Ma L. Ceramics, 2020(4), 52 (in Chinese). 徐子勤, 杨智荣, 马亮. 陶瓷, 2020(4), 52. 20 Niu Y G, Zeng L K, Liu Y C, et al. China Ceramics, 2009, 45(4), 18 (in Chinese). 牛艳鸽, 曾令可, 刘艳春, 等. 中国陶瓷, 2009, 45(4), 18. 21 Han L. Adhesion, 2019, 40(8), 66 (in Chinese). 韩乐. 粘接, 2019, 40(8), 66. 22 Tsang P, Jacko M, Rhee S. Wear, 1985, 103(3), 217. 23 Lam R C. U. S. patent application, USEP0766019B1, 2000. 24 Yesnik M A. U. S. patent application, USEP0645552B1, 1997. 25 Wong V W, Tung S C. Friction, 2016, 4(1), 1. 26 Wennerberg A, Albrektsson T, Jimbo R. Implant surfaces and their biological and clinical impact, Springer, Germany, 2015, pp. 182. 27 Niinomi M. Metallurgical and materials transactions A, 2002, 33(3), 477. 28 Henriqes V, Galvani E, Petroni S, et al. Journal of Materials Science, 2010, 45(21), 5844. 29 Konopka K, Roik T A, Gavrish A P, et al. Powder Metallurgy and Metal Ceramics, 2012, 51(5-6), 363. 30 Roik T A, Gavrysh O A, Vitsiuk I I, et al. Powder Metallurgy and Metal Ceramics, 2018, 56(9-10), 516. 31 Vos F, Delaey L, De Bonte M, et al. Thermal Spray, 1998(1-2), 117. 32 Kurzawa A, Roik T, Gavrysh O, et al. Coatings, 2020, 10(5), 454. 33 Li F, Zhu S Y, Cheng J, et al. Tribology International, 2017, 111, 46. 34 Deng J X, Cao T K. International Journal of Refractory Metals & Hard Materials, 2007, 25(2), 189. 35 Leonardi M, Alemani M, Straffelini G, et al. Wear, 2020, 442-443, 203157. 36 Zhang P, Zhang L, Wei D B, et al. Wear, 2019, 432, 202927. 37 Aydin T, Bican O, Gumruk R. Journal of the Australian Ceramic Society, 2020, 56(2), 525. 38 Yu L G, Liu W M, Xue Q J. Journal of Applied Polymer Science, 1998, 68(10), 1643. 39 Rossi S, Parziani N, Zanella C. Wear, 2015, 332, 702. 40 Zhao Q, Bahadur S. Wear, 1999, 225, 660. 41 Woodward D, Friel S. Coatings, 2017, 7(5), 71. 42 Liu F, Qu D C, Tan Z C, et al. In:World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium 2016. Wmcaus, 2016, pp. 594. 43 Wu X R, Zhen N X, Kong F S. Coatings, 2019, 9(11), 761. 44 Yanar H, Ayar H H, Demirtas M, et al. Industrial Lubrication and Tribology, 2020, 72(2). 195. 45 Rodrigues A C P, Osterle W, Gradt T, et al. Tribology International, 2017, 110, 103. 46 Gao C P, Wang Y M, Hu D W, et al. Journal of Nanoparticle Research, 2013, 15(3), 1502. 47 Hu C, Chen P, Xiang W H. Ceramics International, 2019, 45(3), 3263. 48 Mori T, Tanaka T. Journal of the Physical Society of Japan, 2000, 69(2), 579. 49 Qiu G M, Li X K, Qiu L K, et al. Journal of Rare Earths, 2007, 25, 301. 50 Odintsov V V, Koren E V. Journal of Friction and Wear, 2018, 39(6), 483. 51 Zheng K K, Gao C H, He F S, et al. Polymers, 2018, 10(9), 1027. 52 Yu Y H, Song J F, Zhao G, et al. Industrial Lubrication and Tribology, 2020, 72(3), 433. 53 Cui G J, Liu H Q, Li S, et al. Journal of Materials Research and Technology, 2020, 9(2), 2402. 54 Zhai D J, Shui Y, Feng K Q, et al. RSC Advances, 2019, 9(36), 20687. 55 Meng Z X, Cao M, Wang D, et al. China Non-metallic Minerals Industry, 2017(1), 5 (in Chinese). 孟增祥, 曹敏, 王东, 等. 中国非金属矿工业导刊, 2017(1), 5. 56 Akram W, Mateen A, Qazi I, et al. In:16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Islamabad, 2019, pp. 66. 57 Patel S K, Singh V P, Kumar N, et al. Silicon, 2020, 12(1), 211. 58 Chang Y H, Joo B S, Lee S M, et al. Wear, 2018, 394, 80. 59 Kim S S, Hwang H J, Shin M W, et al. Wear, 2011, 271(7-8), 1194. 60 Shin M W, Kim Y H, Jang H. Tribology Letters, 2014, 55(3), 371. 61 Panwar R S, Kumar S, Pandey R, et al. Tribology Letters, 2014, 55(1), 83. 62 Cho K H, Jang H, Hong Y S, et al. Wear, 2008, 264(3-4), 291. 63 Strojny-Nedza A, Pietrzak K, Gili F, et al. Archives of Civil and Mecha-nical Engineering, 2020, 20(3), 83. 64 Saikrishnan G, Jayakumari L S, Vijay R, et al. Industrial Lubrication and Tribology, 2020, 72(1), 66. 65 Handa Y, Kato T. Tribology Transactions, 1996, 39(2), 346. 66 Shen R H, He L. Production technology of friction materials and their products, Peking University Press, China, 2010, pp. 392 (in Chinese). 申荣华, 何林. 摩擦材料及其制品生产技术, 北京大学出版社, 2010, pp. 392. 67 Shao H S. Friction and wear, China Coal Industry Publishing House, China, 1991, pp. 513 (in Chinese). 邵荷生. 摩擦与磨损, 煤炭工业出版社, 1991, pp. 513. 68 Chen S L, Yuan H C, Ding X J. Friction and lubrication of solids, China Machine Press, China, 1982, pp. 91 (in Chinese). 陈绍澧, 袁汉昌, 丁雪加. 固体的摩擦与润滑, 机械工业出版社, 1982, pp. 91. 69 Bao M. Study on fetting damage of cylinder-plate contact pair and riveted joint of aluminium alloy. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2013 (in Chinese). 鲍敏. 铝合金柱-平面接触副及其铆接件微动损伤研究. 硕士学位论文, 南京航空航天大学, 2013. 70 Zhao G P. Effect of material, structure, morphological coupling elements and characteristic variables on wear properties of aluminum alloys. Master's Thesis, Jilin University, China, 2020 (in Chinese). 赵国平. 材料、结构、形态耦元及其特征量对铝合金磨损性能的影响. 硕士学位论文, 吉林大学, 2020. 71 Yu H L, Wang H M, Yin Y L, et al. Tribology International, 2021, 153, 106562. 72 Gupta R, Sharma S, Nanda T, et al. Materials Research Express, 2020, 7(1), 016540. 73 Sharma S M, Anand A. Transactions of the Indian Institute of Metals, 2018, 71(4), 883. 74 Anand A, Sharma S M. Transactions of the Indian Institute of Metals, 2017, 70(10), 2641. 75 Winer W. Wear, 1967, 10, 422. 76 Vijay R, Singaravelu D L, Filip P. Surface Review and Letters, 2020, 27(1), 1950085. 77 Chen B, Bi Q, Yang J, et al. Tribology International, 2008, 41(12), 1145. 78 Kumar H, Vashista M, Yusufzai M Z K. Transactions of the Indian Institute of Metals, 2018, 71(8), 2025. 79 Rahsepar M, Jarahimoghadam H. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2016, 671, 214. 80 Wang Z J, Wu L N, Qi Y L, et al. Applied Surface Science, 2010, 256(11), 3443. 81 Beauvais M, Piezel B, Hamidi F, et al. Thin Solid Films, 2010, 518(6), 1689. 82 Bolotov A N, Burdo G B, Novikov V V. Mechanical Science and Techno-logy Update (Mstu-2018), 2018, 1050(1), 012015. 83 Haq I U, Khan T I. Surface & Coatings Technology, 2011, 205(8-9), 2871. 84 Che J F, Song Y, Lu Y P, et al. Non-Metallic Mines, 1999(5), 40 (in Chinese). 车剑飞, 宋晔, 陆怡平, 等. 非金属矿, 1999(5), 40. 85 Karunakara S, Dinesh P. Materials Today-Proceedings, 2018, 5(1), 2901. 86 Phanibhushana M V, Chandrappa C N, Niranjan H B. Materials Today-Proceedings, 2017, 4(2), 3484. 87 Gencel O, Ozel C, Filiz M, et al. International Journal of Pavement Engineering, 2012, 13(3), 235. 88 Gencel O, Ozel C, Filiz M. Indian Journal of Engineering and Materials Sciences, 2011, 18(1), 40. 89 Khalili A, Mojtahedi M, Qaderi A, et al. Optics and Laser Technology, 2021, 135, 106693. 90 Krishnakumar M, Hariharan J, Saravanan R. Materials Today-Procee-dings, 2020, 27, 2418. 91 Gerashchenkov D A, Sobolev M Y, Markov M A, et al. Journal of Friction and Wear, 2018, 39(6), 522. 92 Yang B, Wang A Q, Liu K D, et al. Materials, 2020, 13(20), 4547. 93 Shu D, Cui X X, Li Z G, et al. Metals, 2020, 10(3), 383. 94 Liu D, Duan Y H, Bao W Z, et al. Materials Characterization, 2020, 164, 110362. 95 Zhang T T, Feng K, Li Z G, et al. Applied Surface Science, 2020, 530, 147051. 96 Li T, Wang X T, Tang S Q, et al. Rare Metals, 2020, 40(8), 2206. 97 Zhang T G, Zhuang H F, Zhang Q, et al. Ceramics International, 2020, 46(9), 13711. 98 Hou Y, Chen H Y, Cheng Q, et al. Materials Express, 2020, 10(5), 634. 99 Guo Y P, Xue Z, Li G, et al. International Journal of Electrochemical Science, 2020, 15(8), 7682. 100 Zhong L X. Stufy on the interface adhesion, friction and wear properties of paper-based friction material. Master's Thesis, South China University of Technology, China, 2011 (in Chinese). 钟林新. 纸基摩擦材料的界面结合性能及其摩擦、磨损性能的研究. 硕士学位论文, 华南理工大学, 2011. 101 Turcsányi B, Pukánszky B, Tüdõs F. Journal of Materials Science Letters, 1988, 7(2), 160. 102 Li Q Y, Nian G D, Tao W M, et al. Journal of Applied Mechanics-Transactions of the Asme, 2019, 86(7), 160. 103 Zanotti C, Rostagno G, Tingley B. Construction and Building Materials, 2018, 160, 775. 104 Kunishima T, Nagai Y, Nagai S, et al. Wear, 2020, 462, 203500. 105 Fu S Y, Feng X Q, Lauke B, et al. Composites Part B Engineering, 2008, 39(6), 933. 106 Yan W, Lin R J T, Bhattacharyya D. Composites Science & Technology, 2006, 66(13), 2080. 107 Halpin J C, Kardos J L. Polymer Engineering and Science, 1976, 16(5), 344. 108 Hui C, Shia D. Polymer Engineering and Science, 1998, 38(5), 774. 109 Kuular A A, Simunin M M, Bermeshev T V, et al. Technical Physics Letters, 2020, 46(12), 1215. 110 Lian B Q, Peng J B, Zhan H B, et al. Bulletin of Engineering Geology and the Environment, 2020, 79(3), 1555. 111 Zheng Y Y, Liu W W, Wang Q Y, et al. Colloid and Interface Science Communications, 2020, 34, 100231. 112 Li X N, Xia C L, Li J Z, et al. Polymer Testing, 2020, 89, 106648. 113 Martín-Alfonso J E, Martín-Alfonso M J, Valencia C, et al. Friction, 2020, 9(2), 415. 114 Zhao X M, Li W, Wang Y J, et al. Carbon, 2021, 181, 40. 115 Wang B, Fu Q, Li H, et al. Journal of Alloys and Compounds, 2021, 854, 157176. 116 Sabah E, Ouki S. Environmental Science and Pollution Research, 2017, 24(27), 21680. 117 Zhang Y H, He M, Xu M B, et al. Construction and Building Materials, 2020, 239, 117837. 118 Meng Z, Wang Y, Xin X, et al. Tribology International, 2021, 153, 106628. 119 Terleeva O P, Slonova A I, Rogov A B, et al. Materials, 2019, 12(17), 2738. 120 Woodside W, Messmer J H. Journal of Applied Physics, 1961, 32(9), 1688. 121 Mahale V, Bijwe J. Journal of Composite Materials, 2020, 54(27), 4145. 122 Sellami A, Hentati N, Kchaou M, et al. Mechanics & Industry, 2020, 21(6), 613. 123 Zhang X, Zhang Y Z, Du S M, et al. Materials, 2018, 11(10), 2016. 124 Lin R H, Fang L, Li X P, et al. Polymer Journal, 2006, 38(2), 178. 125 Straffelini G, Ciudin R, Ciotti A, et al. Environmental Pollution, 2015, 207, 211. 126 Manoharan S, Vijay R, Singaravelu D L, et al. Arabian Journal for Science and Engineering, 2018, 44(2), 1459. 127 Zhang X, Li K Z, Li H J, et al. Journal of Inorganic Materials, 2011, 26(6), 638. 128 Lin H Y, Cheng H Z, Lee K J, et al. Materials, 2020, 13(5), 1163. 129 Sathickbasha K, Selvakumar A S, Balaji M A S, et al. Materials Research Express, 2019, 6(4), 045315. 130 Xie Y N. Study on thermal conductivity of epoxy matrix composites. Master's Thesis, Guizhou University, China, 2020 (in Chinese). 谢宇宁. 环氧基复合材料的导热性能研究. 硕士学位论文, 贵州大学, 2020. 131 Raimondo M, Naddeo C, Vertuccio L, et al. Polymers, 2019, 11(5), 832. 132 Giri S K, Pradhan G C, Das N. Journal of Polymer Research, 2014, 21(5), 446. 133 Kirchberg S, Rudolph M, Ziegmann G, et al. Journal of Nanomaterials, 2012, 2012(1-8), 670531. 134 Rajkumar K, Ramraji K, Nambiraj K M, et al. Materials Today-Proceedings, 2020, 27, 696. 135 Kumar L R, Saravanakumar A, Bhuvaneswari V, et al. Materials Today-Proceedings, 2020, 27, 2645. 136 Xiao J K, Xiao S X, Chen J, et al. Tribology International, 2020, 150, 106357. 137 Li Y Q, Wang Q H, Wang T M, et al. Journal of Materials Science, 2012, 47(2), 730. 138 Mazumder S, Barad B B, Show B K, et al. Ceramics International, 2019, 45(10), 13447. 139 Jiang C, Wang H J, Li M L, et al. Journal of Materials Engineering and Performance, 2020, 29(12), 7830. 140 Yang X F, Wang Z R, Song P L, et al. Tribology Transactions, 2015, 58(2), 231. 141 Sathickbasha K, Selvakumar A S, Balachandran S R, et al. Industrial Lubrication and Tribology, 2020, 73(2), 325. 142 Kim S J, Cho M H, Cho K H, et al. Tribology International, 2007, 40(1), 15. 143 Dante R C. Handbook of Friction Materials and their Applications, 2016, 23, 29. 144 Martinez A M, Echeberria J. Wear, 2016, 348, 27. 145 Yao X M, Wang X J, Liu X J, et al. Journal of Inorganic Materials, 2019, 34(6), 673. 146 Cao X Q, Shang L L, Liang Y M, et al. Ceramics International, 2019, 45(4), 4581. 147 Yu J, Wang Y H, Zhao X C, et al. Advances in Materials Science and Engineering, 2019, 2019, 2548285. 148 Xu X, Su F H, Li Z J. Wear, 2019, 430, 73. 149 Xiong S, Liang D, Wu H, et al. Applied Surface Science, 2021, 539, 148090. 150 Zhu S Y, Bi Q L, Yang J, et al. Tribology Letters, 2012, 45(2), 251. 151 Zhang P L, Zhao G P, Wang W Z, et al. Metals, 2020, 10(2), 268. 152 Sundaram C M, Rajesh A V, Sivaganesan V. Bulletin of the Chemical Society of Ethiopia, 2020, 34(1), 203. 153 Li B, Gao Y M, Han M M, et al. Vacuum, 2017, 143, 1. 154 Li B, Gao Y M, Han M M, et al. Journal of Materials Research, 2017, 32(9), 1674. 155 Elsheikh A H, Yu J G, Sathyamurthy R, et al. Journal of Alloys and Compounds, 2020, 821, 153494. 156 Prabhu T R. Journal of Materials Engineering and Performance, 2016, 25(4), 1436. 157 Zhang P, Zhang L, Wei D B, et al. Composites Part B-Engineering, 2020, 185, 107779. 158 Wu H Y, Ye Y M, Lu H Q, et al. Materials Research Express, 2020, 7(1), 016599. 159 Holinski R. Brakes 2000:Automotive Braking-Technologies for the 21st Century, 2000, 1, 197. 160 Gilardi R, Alzati L, Thiam M, et al. Materials, 2012, 5(11), 2258. 161 Thompson J. R-399 Brake NVH:Testing and Measurements, SAE International, USA, 2011, pp. 156. 162 Bettella M, Harrison M F, Sharp R S. Journal of Sound & Vibration, 2002, 255(3), 531. 163 Liu W H. Study on vibration reduction mechanism and application of low vibration vertical mill based on particle damping. Master's Thesis, Xi'an University of Architecture and Technology, China, 2020 (in Chinese). 刘文欢. 基于颗粒阻尼的低振动立磨减振机理与应用研究. 硕士学位论文, 西安建筑科技大学, 2020. 164 Cortes F, Elejabarrieta M J. International Journal of Solids and Structures, 2006, 43(25-26), 7721. 165 Zhang Y, Zhang J H, Yin J C, et al. Proceedings of the 2015 International Conference on Applied Science and Engineering Innovation, 2015, 12, 1922. 166 Wang T, Zhang J H, Hao S M. Journal of Reinforced Plastics and Composites, 2013, 32(12), 875.