Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21110103-14    https://doi.org/10.11896/cldb.21110103
  金属与金属基复合材料 |
战略性矿产在高性能摩擦材料中的研究进展
余坤1,2,3,4, 尚玺5, 傅梁杰1,2,3,4, 左小超1,2,3,4,*, 杨华明1,2,3,4,5,*
1 中国地质大学(武汉)纳米矿物材料及应用教育部工程研究中心,武汉 430074
2 中国地质大学(武汉)先进矿物材料实验室,武汉 430074
3 中国非金属矿行业矿物功能材料重点实验室,武汉 430074
4 中国地质大学(武汉) 材料与化学学院,武汉 430074
5 中南大学矿物材料及其应用湖南省重点实验室,长沙 410083
Research Progress of Strategic Minerals for High Performance Friction Materials
YU Kun1,2,3,4, SHANG Xi5, FU Liangjie1,2,3,4, ZUO Xiaochao1,2,3,4,*, YANG Huaming1,2,3,4,5,*
1 Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
2 Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
3 Key Laboratory of Functional Geomaterials in China, Nonmetallic Minerals Industry, Wuhan 430074, China
4 Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
5 Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 14300KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 摩擦材料是一种应用在交通运输和动力机械上,通过摩擦作用来完成制动和传动的部件材料,主要由增强材料、粘合剂和填料构成。随着汽车工业和交通技术的发展和革新,庞大的市场需求和潜在的经济价值不可估量,然而传统摩擦材料的性能逐渐不能满足用户要求,因此开发设计拥有耐磨、耐高温和优异摩擦稳定性等诸多优点的高性能摩擦材料迫在眉睫。摩擦材料功能的正常运行往往需要性能的多维组合,这对材料设计中原料的选择带来了挑战。而战略性矿产的种类丰富多样,具有优异的力学、热学和摩擦学等性能,正是高性能摩擦材料组分的合适之选,也逐渐成为各国学者研究的热点,被认为是极具前景的增强材料和填料。本文简要介绍了近年来多种战略性矿产在高性能摩擦材料领域的应用和发展,系统归纳了战略性矿产在力学、热学、润滑、降噪和摩擦学方面的最新研究进展,配合相关理论模型分析了各种调控背后的机理,最后提出了当前研究存在的不足和问题,并展望了未来摩擦材料配方研究的发展趋势和工作重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余坤
尚玺
傅梁杰
左小超
杨华明
关键词:  战略性矿产  增强效应  摩擦材料  摩擦性能    
Abstract: Friction material is mainly used for braking/transmission of vehicles or power generating machines through friction processes. It is composed of three parts:reinforcing materials, adhesives, and fillers. The rapid development and innovation of transportation technology and the automobile industry have resulted in massive markets with enormous economic benefits. Traditional friction materials cannot meet the increasing user demands because of limited performance. Therefore, developing advanced friction materials with premium wear/high-temperature resistance and friction-stability becomes imminent. Due to the need for effective integration of multi properties, selecting starting materials for friction material is usually tricky. Among all the materials, strategic minerals stand out due to their natural abundance, excellent mechanical, thermal and tribological properties. Strategic minerals have become research hotspots nowadays because of the superb reinforcement/filler behaviors. In this article, we have briefly introduced the application and development of various strategic minerals for high-performance friction materials in recent years. Also, the latest progress of strategic minerals in mechanics, thermals, lubrication, noise reduction and tribology has been systematically summarized, and the mechanisms behind various modulation have been analyzed in conjunction with relevant theoretical models. Finally, deficiencies and problems of the current research have been pointed out, and the future recommendations and work focus of friction material design have been prospected.
Key words:  strategic minerals    reinforcement effect    friction material    friction performance
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TB332  
基金资助: 国家重点研发计划(2017YFB0310903)
通讯作者:  * 左小超,中国地质大学(武汉)纳米矿物材料及应用教育部工程研究中心助理研究员、硕士研究生导师。2013年7月本科毕业河南理工大学,获工学学士学位。2016年7月硕士毕业于中国矿业大学(北京),获工学硕士学位。2020年11月毕业于中南大学,获工学博士学位。2018年11月至2020年8月在国家留学基金委资助下公派至澳大利亚昆士兰科技大学进行博士联合培养,主要从事有机无机复合材料、黏土矿物纳米化、矿物基储热材料等的研究。近年来,在Renewable Energy、Applied Thermal Engineering、《无机化学学报》《硅酸盐学报》等期刊发表论文24篇,其中第一作者/通信作者8篇,授权国家发明专利1项。zuoxiaochao@cug.edu.cn;杨华明,博士,中国地质大学(武汉)和中南大学教授、博士研究生导师,俄罗斯工程院外籍院士,中组部国家“万人计划”领军人才、国家杰出青年科学基金获得者、科技部中青年科技创新领军人才、教育部新世纪优秀人才、享受国务院政府特殊津贴专家、国家重点研发计划项目首席科学家。现任中国非金属矿行业矿物功能材料重点实验室主任、纳米矿物材料及应用教育部工程研究中心主任、矿物材料及其应用湖南省重点实验室主任、湖南省矿物材料国际联合实验室主任。在中南工业大学获学士、硕士和博士学位,先后在英国布里斯托大学、澳大利亚昆士兰大学等任访问学者。长期从事矿物功能材料、能源与环境材料、生物医药材料、固废资源化等研究,主持多项国家级科研项目,在Adv.Funct.Mater.、Chem.Mater.、J.Phys.Chem.Lett.、Appl.Catal.B、J.Mater.Chem.A、ChemComm、Am.Mineral.、Clay Clay Miner.、Appl.Clay Sci.等发表SCI论文200多篇,制定国家/行业标准4项,授权专利40余项,出版学术专著和教材6部,获省部级科技一等奖4项、优秀图书一等奖3项,获陈新民奖励基金优秀年轻教师奖、宝钢优秀教师奖。担任国际期刊Clay Minerals副主编、中国非金属矿工业协会副会长、全国非金属矿产品及制品标准化技术委员会委员、中国硅酸盐学会矿物材料分会副理事长等。hmyang@csu.edu.cn   
作者简介:  余坤,2017年本科毕业于安徽农业大学材料科学与工程专业,获工学学士学位。2020年在中国地质大学(武汉)材料与化学学院获得硕士学位。现为中国地质大学(武汉)纳米矿物材料及应用教育部工程研究中心、材料与化学学院博士研究生,在杨华明教授的指导下进行研究工作。目前主要研究领域为高性能摩擦材料。
引用本文:    
余坤, 尚玺, 傅梁杰, 左小超, 杨华明. 战略性矿产在高性能摩擦材料中的研究进展[J]. 材料导报, 2023, 37(15): 21110103-14.
YU Kun, SHANG Xi, FU Liangjie, ZUO Xiaochao, YANG Huaming. Research Progress of Strategic Minerals for High Performance Friction Materials. Materials Reports, 2023, 37(15): 21110103-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110103  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21110103
1 Dong Y T, Yin X Y, Zhang Y F, et al. Acta Geoscientica Sinica, 2020, 42(2), 145 (in Chinese).
董延涛, 阴秀琦, 张艳飞, 等. 地球学报, 2020, 42(2), 145.
2 Chen Q S, Zhang Y F, Xing J Y, et al. Acta Geoscientica Sinica, 2020, 42(2), 137 (in Chinese).
陈其慎, 张艳飞, 邢佳韵, 等. 地球学报, 2020, 42(2), 137.
3 Liu X H. China Mining News, 2021(1), 11 (in Chinese).
刘晓慧. 中国矿业报, 2021(1), 11.
4 Zhao X G, Ouyang J, Zhang Y, et al. Materials Reports, 2019, 33(11), 1860 (in Chinese).
赵晓光, 欧阳静, 张毅, 等. 材料导报, 2019, 33(11), 1860.
5 Chen K W, Duan Y P. Modern Manufacturing Technology and Equipment, 2018(10), 111 (in Chinese).
陈克文, 段亚萍. 现代制造技术与装备, 2018(10), 111.
6 Li D K. Reform, 2020(1), 5 (in Chinese).
李稻葵. 改革, 2020(1), 5.
7 Wang D G, Yin J K, Zhu Z C, et al. Wear, 2020, 458, 203391.
8 Zhu R Y, Zhang P L, Yu Z S, et al. Surface & Coatings Technology, 2020, 383, 125248.
9 Hou K, Ouyang J, Zheng C, et al. Materials Express, 2017, 7(2), 104.
10 Zhao X G, Ouyang J, Tan Q, et al. Materials Express, 2020, 10(1), 70.
11 Fang Y X. Study on comprehensive properties of non-metal filler reinforced phenolic resin based friction materials. Master's Thesis, Chongqing Jiaotong University, China, 2019 (in Chinese).
方远兴. 非金属填料对酚醛树脂基摩擦材料的综合性能研究. 硕士学位论文, 重庆交通大学, 2019.
12 Binda F F, Oliveira V D, Fortulan C A, et al. Journal of Materials Research and Technology-Jmr&T, 2020, 9(3), 3378.
13 Yu J, He J, Ya C. Journal of Applied Polymer Science, 2011, 119(1), 275.
14 Wen G F, He R, Wang X F. et al. Powder Metallurgy Industry, 2020, 30(5), 45 (in Chinese).
文国富, 何锐, 王秀飞, 等. 粉末冶金工业, 2020, 30(5), 45.
15 Liu X S, Xu X F, Wang X F. et al. Powder Metallurgy Industry, 2021, 31(3), 18 (in Chinese).
刘喜双, 许雄飞, 王秀飞, 等. 粉末冶金工业, 2021, 31(3), 18.
16 Zhang F T. Powder Metallurgy Industry, 2018, 28(5), 41 (in Chinese).
张发厅. 粉末冶金工业, 2018, 28(5), 41.
17 Wang Y, Yan Q Z, Zhang X L, et al. Powder Metallurgy Industry, 2012, 30(6), 432 (in Chinese).
王晔, 燕青芝, 张肖路, 等. 粉末冶金技术, 2012, 30(6), 432.
18 Chen J, Yao P P, Sheng H C, et al. Hot Working Technology, 2006(7), 13 (in Chinese).
陈军, 姚萍屏, 盛洪超, 等. 热加工工艺, 2006(7), 13.
19 Xu Z Q, Yang Z R, Ma L. Ceramics, 2020(4), 52 (in Chinese).
徐子勤, 杨智荣, 马亮. 陶瓷, 2020(4), 52.
20 Niu Y G, Zeng L K, Liu Y C, et al. China Ceramics, 2009, 45(4), 18 (in Chinese).
牛艳鸽, 曾令可, 刘艳春, 等. 中国陶瓷, 2009, 45(4), 18.
21 Han L. Adhesion, 2019, 40(8), 66 (in Chinese).
韩乐. 粘接, 2019, 40(8), 66.
22 Tsang P, Jacko M, Rhee S. Wear, 1985, 103(3), 217.
23 Lam R C. U. S. patent application, USEP0766019B1, 2000.
24 Yesnik M A. U. S. patent application, USEP0645552B1, 1997.
25 Wong V W, Tung S C. Friction, 2016, 4(1), 1.
26 Wennerberg A, Albrektsson T, Jimbo R. Implant surfaces and their biological and clinical impact, Springer, Germany, 2015, pp. 182.
27 Niinomi M. Metallurgical and materials transactions A, 2002, 33(3), 477.
28 Henriqes V, Galvani E, Petroni S, et al. Journal of Materials Science, 2010, 45(21), 5844.
29 Konopka K, Roik T A, Gavrish A P, et al. Powder Metallurgy and Metal Ceramics, 2012, 51(5-6), 363.
30 Roik T A, Gavrysh O A, Vitsiuk I I, et al. Powder Metallurgy and Metal Ceramics, 2018, 56(9-10), 516.
31 Vos F, Delaey L, De Bonte M, et al. Thermal Spray, 1998(1-2), 117.
32 Kurzawa A, Roik T, Gavrysh O, et al. Coatings, 2020, 10(5), 454.
33 Li F, Zhu S Y, Cheng J, et al. Tribology International, 2017, 111, 46.
34 Deng J X, Cao T K. International Journal of Refractory Metals & Hard Materials, 2007, 25(2), 189.
35 Leonardi M, Alemani M, Straffelini G, et al. Wear, 2020, 442-443, 203157.
36 Zhang P, Zhang L, Wei D B, et al. Wear, 2019, 432, 202927.
37 Aydin T, Bican O, Gumruk R. Journal of the Australian Ceramic Society, 2020, 56(2), 525.
38 Yu L G, Liu W M, Xue Q J. Journal of Applied Polymer Science, 1998, 68(10), 1643.
39 Rossi S, Parziani N, Zanella C. Wear, 2015, 332, 702.
40 Zhao Q, Bahadur S. Wear, 1999, 225, 660.
41 Woodward D, Friel S. Coatings, 2017, 7(5), 71.
42 Liu F, Qu D C, Tan Z C, et al. In:World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium 2016. Wmcaus, 2016, pp. 594.
43 Wu X R, Zhen N X, Kong F S. Coatings, 2019, 9(11), 761.
44 Yanar H, Ayar H H, Demirtas M, et al. Industrial Lubrication and Tribology, 2020, 72(2). 195.
45 Rodrigues A C P, Osterle W, Gradt T, et al. Tribology International, 2017, 110, 103.
46 Gao C P, Wang Y M, Hu D W, et al. Journal of Nanoparticle Research, 2013, 15(3), 1502.
47 Hu C, Chen P, Xiang W H. Ceramics International, 2019, 45(3), 3263.
48 Mori T, Tanaka T. Journal of the Physical Society of Japan, 2000, 69(2), 579.
49 Qiu G M, Li X K, Qiu L K, et al. Journal of Rare Earths, 2007, 25, 301.
50 Odintsov V V, Koren E V. Journal of Friction and Wear, 2018, 39(6), 483.
51 Zheng K K, Gao C H, He F S, et al. Polymers, 2018, 10(9), 1027.
52 Yu Y H, Song J F, Zhao G, et al. Industrial Lubrication and Tribology, 2020, 72(3), 433.
53 Cui G J, Liu H Q, Li S, et al. Journal of Materials Research and Technology, 2020, 9(2), 2402.
54 Zhai D J, Shui Y, Feng K Q, et al. RSC Advances, 2019, 9(36), 20687.
55 Meng Z X, Cao M, Wang D, et al. China Non-metallic Minerals Industry, 2017(1), 5 (in Chinese).
孟增祥, 曹敏, 王东, 等. 中国非金属矿工业导刊, 2017(1), 5.
56 Akram W, Mateen A, Qazi I, et al. In:16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Islamabad, 2019, pp. 66.
57 Patel S K, Singh V P, Kumar N, et al. Silicon, 2020, 12(1), 211.
58 Chang Y H, Joo B S, Lee S M, et al. Wear, 2018, 394, 80.
59 Kim S S, Hwang H J, Shin M W, et al. Wear, 2011, 271(7-8), 1194.
60 Shin M W, Kim Y H, Jang H. Tribology Letters, 2014, 55(3), 371.
61 Panwar R S, Kumar S, Pandey R, et al. Tribology Letters, 2014, 55(1), 83.
62 Cho K H, Jang H, Hong Y S, et al. Wear, 2008, 264(3-4), 291.
63 Strojny-Nedza A, Pietrzak K, Gili F, et al. Archives of Civil and Mecha-nical Engineering, 2020, 20(3), 83.
64 Saikrishnan G, Jayakumari L S, Vijay R, et al. Industrial Lubrication and Tribology, 2020, 72(1), 66.
65 Handa Y, Kato T. Tribology Transactions, 1996, 39(2), 346.
66 Shen R H, He L. Production technology of friction materials and their products, Peking University Press, China, 2010, pp. 392 (in Chinese).
申荣华, 何林. 摩擦材料及其制品生产技术, 北京大学出版社, 2010, pp. 392.
67 Shao H S. Friction and wear, China Coal Industry Publishing House, China, 1991, pp. 513 (in Chinese).
邵荷生. 摩擦与磨损, 煤炭工业出版社, 1991, pp. 513.
68 Chen S L, Yuan H C, Ding X J. Friction and lubrication of solids, China Machine Press, China, 1982, pp. 91 (in Chinese).
陈绍澧, 袁汉昌, 丁雪加. 固体的摩擦与润滑, 机械工业出版社, 1982, pp. 91.
69 Bao M. Study on fetting damage of cylinder-plate contact pair and riveted joint of aluminium alloy. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2013 (in Chinese).
鲍敏. 铝合金柱-平面接触副及其铆接件微动损伤研究. 硕士学位论文, 南京航空航天大学, 2013.
70 Zhao G P. Effect of material, structure, morphological coupling elements and characteristic variables on wear properties of aluminum alloys. Master's Thesis, Jilin University, China, 2020 (in Chinese).
赵国平. 材料、结构、形态耦元及其特征量对铝合金磨损性能的影响. 硕士学位论文, 吉林大学, 2020.
71 Yu H L, Wang H M, Yin Y L, et al. Tribology International, 2021, 153, 106562.
72 Gupta R, Sharma S, Nanda T, et al. Materials Research Express, 2020, 7(1), 016540.
73 Sharma S M, Anand A. Transactions of the Indian Institute of Metals, 2018, 71(4), 883.
74 Anand A, Sharma S M. Transactions of the Indian Institute of Metals, 2017, 70(10), 2641.
75 Winer W. Wear, 1967, 10, 422.
76 Vijay R, Singaravelu D L, Filip P. Surface Review and Letters, 2020, 27(1), 1950085.
77 Chen B, Bi Q, Yang J, et al. Tribology International, 2008, 41(12), 1145.
78 Kumar H, Vashista M, Yusufzai M Z K. Transactions of the Indian Institute of Metals, 2018, 71(8), 2025.
79 Rahsepar M, Jarahimoghadam H. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2016, 671, 214.
80 Wang Z J, Wu L N, Qi Y L, et al. Applied Surface Science, 2010, 256(11), 3443.
81 Beauvais M, Piezel B, Hamidi F, et al. Thin Solid Films, 2010, 518(6), 1689.
82 Bolotov A N, Burdo G B, Novikov V V. Mechanical Science and Techno-logy Update (Mstu-2018), 2018, 1050(1), 012015.
83 Haq I U, Khan T I. Surface & Coatings Technology, 2011, 205(8-9), 2871.
84 Che J F, Song Y, Lu Y P, et al. Non-Metallic Mines, 1999(5), 40 (in Chinese).
车剑飞, 宋晔, 陆怡平, 等. 非金属矿, 1999(5), 40.
85 Karunakara S, Dinesh P. Materials Today-Proceedings, 2018, 5(1), 2901.
86 Phanibhushana M V, Chandrappa C N, Niranjan H B. Materials Today-Proceedings, 2017, 4(2), 3484.
87 Gencel O, Ozel C, Filiz M, et al. International Journal of Pavement Engineering, 2012, 13(3), 235.
88 Gencel O, Ozel C, Filiz M. Indian Journal of Engineering and Materials Sciences, 2011, 18(1), 40.
89 Khalili A, Mojtahedi M, Qaderi A, et al. Optics and Laser Technology, 2021, 135, 106693.
90 Krishnakumar M, Hariharan J, Saravanan R. Materials Today-Procee-dings, 2020, 27, 2418.
91 Gerashchenkov D A, Sobolev M Y, Markov M A, et al. Journal of Friction and Wear, 2018, 39(6), 522.
92 Yang B, Wang A Q, Liu K D, et al. Materials, 2020, 13(20), 4547.
93 Shu D, Cui X X, Li Z G, et al. Metals, 2020, 10(3), 383.
94 Liu D, Duan Y H, Bao W Z, et al. Materials Characterization, 2020, 164, 110362.
95 Zhang T T, Feng K, Li Z G, et al. Applied Surface Science, 2020, 530, 147051.
96 Li T, Wang X T, Tang S Q, et al. Rare Metals, 2020, 40(8), 2206.
97 Zhang T G, Zhuang H F, Zhang Q, et al. Ceramics International, 2020, 46(9), 13711.
98 Hou Y, Chen H Y, Cheng Q, et al. Materials Express, 2020, 10(5), 634.
99 Guo Y P, Xue Z, Li G, et al. International Journal of Electrochemical Science, 2020, 15(8), 7682.
100 Zhong L X. Stufy on the interface adhesion, friction and wear properties of paper-based friction material. Master's Thesis, South China University of Technology, China, 2011 (in Chinese).
钟林新. 纸基摩擦材料的界面结合性能及其摩擦、磨损性能的研究. 硕士学位论文, 华南理工大学, 2011.
101 Turcsányi B, Pukánszky B, Tüdõs F. Journal of Materials Science Letters, 1988, 7(2), 160.
102 Li Q Y, Nian G D, Tao W M, et al. Journal of Applied Mechanics-Transactions of the Asme, 2019, 86(7), 160.
103 Zanotti C, Rostagno G, Tingley B. Construction and Building Materials, 2018, 160, 775.
104 Kunishima T, Nagai Y, Nagai S, et al. Wear, 2020, 462, 203500.
105 Fu S Y, Feng X Q, Lauke B, et al. Composites Part B Engineering, 2008, 39(6), 933.
106 Yan W, Lin R J T, Bhattacharyya D. Composites Science & Technology, 2006, 66(13), 2080.
107 Halpin J C, Kardos J L. Polymer Engineering and Science, 1976, 16(5), 344.
108 Hui C, Shia D. Polymer Engineering and Science, 1998, 38(5), 774.
109 Kuular A A, Simunin M M, Bermeshev T V, et al. Technical Physics Letters, 2020, 46(12), 1215.
110 Lian B Q, Peng J B, Zhan H B, et al. Bulletin of Engineering Geology and the Environment, 2020, 79(3), 1555.
111 Zheng Y Y, Liu W W, Wang Q Y, et al. Colloid and Interface Science Communications, 2020, 34, 100231.
112 Li X N, Xia C L, Li J Z, et al. Polymer Testing, 2020, 89, 106648.
113 Martín-Alfonso J E, Martín-Alfonso M J, Valencia C, et al. Friction, 2020, 9(2), 415.
114 Zhao X M, Li W, Wang Y J, et al. Carbon, 2021, 181, 40.
115 Wang B, Fu Q, Li H, et al. Journal of Alloys and Compounds, 2021, 854, 157176.
116 Sabah E, Ouki S. Environmental Science and Pollution Research, 2017, 24(27), 21680.
117 Zhang Y H, He M, Xu M B, et al. Construction and Building Materials, 2020, 239, 117837.
118 Meng Z, Wang Y, Xin X, et al. Tribology International, 2021, 153, 106628.
119 Terleeva O P, Slonova A I, Rogov A B, et al. Materials, 2019, 12(17), 2738.
120 Woodside W, Messmer J H. Journal of Applied Physics, 1961, 32(9), 1688.
121 Mahale V, Bijwe J. Journal of Composite Materials, 2020, 54(27), 4145.
122 Sellami A, Hentati N, Kchaou M, et al. Mechanics & Industry, 2020, 21(6), 613.
123 Zhang X, Zhang Y Z, Du S M, et al. Materials, 2018, 11(10), 2016.
124 Lin R H, Fang L, Li X P, et al. Polymer Journal, 2006, 38(2), 178.
125 Straffelini G, Ciudin R, Ciotti A, et al. Environmental Pollution, 2015, 207, 211.
126 Manoharan S, Vijay R, Singaravelu D L, et al. Arabian Journal for Science and Engineering, 2018, 44(2), 1459.
127 Zhang X, Li K Z, Li H J, et al. Journal of Inorganic Materials, 2011, 26(6), 638.
128 Lin H Y, Cheng H Z, Lee K J, et al. Materials, 2020, 13(5), 1163.
129 Sathickbasha K, Selvakumar A S, Balaji M A S, et al. Materials Research Express, 2019, 6(4), 045315.
130 Xie Y N. Study on thermal conductivity of epoxy matrix composites. Master's Thesis, Guizhou University, China, 2020 (in Chinese).
谢宇宁. 环氧基复合材料的导热性能研究. 硕士学位论文, 贵州大学, 2020.
131 Raimondo M, Naddeo C, Vertuccio L, et al. Polymers, 2019, 11(5), 832.
132 Giri S K, Pradhan G C, Das N. Journal of Polymer Research, 2014, 21(5), 446.
133 Kirchberg S, Rudolph M, Ziegmann G, et al. Journal of Nanomaterials, 2012, 2012(1-8), 670531.
134 Rajkumar K, Ramraji K, Nambiraj K M, et al. Materials Today-Proceedings, 2020, 27, 696.
135 Kumar L R, Saravanakumar A, Bhuvaneswari V, et al. Materials Today-Proceedings, 2020, 27, 2645.
136 Xiao J K, Xiao S X, Chen J, et al. Tribology International, 2020, 150, 106357.
137 Li Y Q, Wang Q H, Wang T M, et al. Journal of Materials Science, 2012, 47(2), 730.
138 Mazumder S, Barad B B, Show B K, et al. Ceramics International, 2019, 45(10), 13447.
139 Jiang C, Wang H J, Li M L, et al. Journal of Materials Engineering and Performance, 2020, 29(12), 7830.
140 Yang X F, Wang Z R, Song P L, et al. Tribology Transactions, 2015, 58(2), 231.
141 Sathickbasha K, Selvakumar A S, Balachandran S R, et al. Industrial Lubrication and Tribology, 2020, 73(2), 325.
142 Kim S J, Cho M H, Cho K H, et al. Tribology International, 2007, 40(1), 15.
143 Dante R C. Handbook of Friction Materials and their Applications, 2016, 23, 29.
144 Martinez A M, Echeberria J. Wear, 2016, 348, 27.
145 Yao X M, Wang X J, Liu X J, et al. Journal of Inorganic Materials, 2019, 34(6), 673.
146 Cao X Q, Shang L L, Liang Y M, et al. Ceramics International, 2019, 45(4), 4581.
147 Yu J, Wang Y H, Zhao X C, et al. Advances in Materials Science and Engineering, 2019, 2019, 2548285.
148 Xu X, Su F H, Li Z J. Wear, 2019, 430, 73.
149 Xiong S, Liang D, Wu H, et al. Applied Surface Science, 2021, 539, 148090.
150 Zhu S Y, Bi Q L, Yang J, et al. Tribology Letters, 2012, 45(2), 251.
151 Zhang P L, Zhao G P, Wang W Z, et al. Metals, 2020, 10(2), 268.
152 Sundaram C M, Rajesh A V, Sivaganesan V. Bulletin of the Chemical Society of Ethiopia, 2020, 34(1), 203.
153 Li B, Gao Y M, Han M M, et al. Vacuum, 2017, 143, 1.
154 Li B, Gao Y M, Han M M, et al. Journal of Materials Research, 2017, 32(9), 1674.
155 Elsheikh A H, Yu J G, Sathyamurthy R, et al. Journal of Alloys and Compounds, 2020, 821, 153494.
156 Prabhu T R. Journal of Materials Engineering and Performance, 2016, 25(4), 1436.
157 Zhang P, Zhang L, Wei D B, et al. Composites Part B-Engineering, 2020, 185, 107779.
158 Wu H Y, Ye Y M, Lu H Q, et al. Materials Research Express, 2020, 7(1), 016599.
159 Holinski R. Brakes 2000:Automotive Braking-Technologies for the 21st Century, 2000, 1, 197.
160 Gilardi R, Alzati L, Thiam M, et al. Materials, 2012, 5(11), 2258.
161 Thompson J. R-399 Brake NVH:Testing and Measurements, SAE International, USA, 2011, pp. 156.
162 Bettella M, Harrison M F, Sharp R S. Journal of Sound & Vibration, 2002, 255(3), 531.
163 Liu W H. Study on vibration reduction mechanism and application of low vibration vertical mill based on particle damping. Master's Thesis, Xi'an University of Architecture and Technology, China, 2020 (in Chinese).
刘文欢. 基于颗粒阻尼的低振动立磨减振机理与应用研究. 硕士学位论文, 西安建筑科技大学, 2020.
164 Cortes F, Elejabarrieta M J. International Journal of Solids and Structures, 2006, 43(25-26), 7721.
165 Zhang Y, Zhang J H, Yin J C, et al. Proceedings of the 2015 International Conference on Applied Science and Engineering Innovation, 2015, 12, 1922.
166 Wang T, Zhang J H, Hao S M. Journal of Reinforced Plastics and Composites, 2013, 32(12), 875.
[1] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[2] 房尚龙, 宋绪丁, 陈克文, 段亚萍. 片状钛酸钾镁对摩擦材料性能的影响[J]. 材料导报, 2022, 36(8): 20060290-5.
[3] 陈思潭, 冯可芹, 张燕燕, 蔡雨晨. 利用热处理改善钒钛磁铁矿直接制备的铁基摩擦材料组织与性能[J]. 材料导报, 2021, 35(14): 14120-14124.
[4] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[5] 赵晓光, 欧阳静, 张毅, 杨华明. 矿物基摩擦材料的研究进展[J]. 材料导报, 2019, 33(11): 1860-1868.
[6] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[7] 龚乾江,徐 祥,杨 明,张世伟,肖 瑞. CPR/NR和高性能填料对复合摩擦材料力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1628-1634.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed