Carboxylamine Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Concrete Specimen
MA Qi1,2, CAI Jingshun1,2, MU Song1,2,*, LIU Kai1,2, LIU Jianzhong1,2, LIU Jiaping1,2,3
1 State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science Co., Ltd., Nanjing 210008, China 2 Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China 3 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Abstract: In this work, the inhibited effect of organic carboxylamine (ZX) and triethylenetetramine (TETA) in simulated concrete pore solution and concrete was studied through linear polarization (LPR), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and concrete-salt water dry-wet cycle test. The results show that the organic carboxylamine corrosion inhibitor can obviously inhibit the reinforced corrosion in simulated concrete pore solution. As the dosage of inhibitor increases, the inhibited effect is better. Because the N and O atoms in organic carboxylamine corrosion inhibitor adsorb on the metal surface, this organic inhibitor not only can coordinate with Fe atoms to form strongly bonds, but also prevent the charge transfer in the metal corrosion process. When the addition is 0.30wt%, the inhibition efficiency of ZX is more than 90% and the inhibition efficiency of triethylenetetramine is 63.74%. The inhibited effect of ZX is obviously better than TETA at low dosage. Further, the reinforced corrosion area in the blank group reaches more than 30%, while the corrosion area is 15.54% with 0.60wt%TETA group and 0.80% with the ZX. Carboxylamine is better inhibition effect in concrete. It can be concluded that adding organic carboxylamine corrosion inhibitor into concrete can improve the concrete structure durability and prolong the service life.
马麒, 蔡景顺, 穆松, 刘凯, 刘建忠, 刘加平. 羧酸胺阻锈剂在模拟孔隙液和混凝土中对钢筋的阻锈作用[J]. 材料导报, 2022, 36(23): 21050285-8.
MA Qi, CAI Jingshun, MU Song, LIU Kai, LIU Jianzhong, LIU Jiaping. Carboxylamine Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Concrete Specimen. Materials Reports, 2022, 36(23): 21050285-8.
1 Pan F, Dang F N, Jiao K, et al. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2), 3948 (in Chinese). 潘峰, 党发宁, 焦凯, 等. 岩石力学与工程学报, 2015, 34(S2), 3948. 2 Chen W, Du R G, Hu R G, et al. Acta Metallurgica Sinica, 2011, 47(6), 735 (in Chinese). 陈雯, 杜荣归, 胡融刚, 等. 金属学报, 2011, 47(6), 735. 3 Adam J M, Parisi F, Sagaseta J, et al.Engineering Structures, 2018, 173, 122. 4 Otieno M B, Beushausen H D, Alexander M G.Cement & Concrete Composites, 2011, 33, 240. 5 Moradi-Marani F, Shekarchi M, Dousti A, et al.Journal of Performance of Constructed Facilities, 2010, 24(4), 294. 6 Al-Amoudi O S B, Maslehuddin M, Lashari A N, et al.Cement & Concrete Composites, 2003, 25, 439. 7 Ormellese M, Berra M, Bolzoni F, et al. Cement and Concrete Research, 2006, 36, 536. 8 Cao F T, Wei J, Dong J H, et al.Acta Metallurgica Sinica, 2020, 56(6), 898 (in Chinese). 曹凤婷, 魏洁, 董俊华, 等. 金属学报, 2020, 56(6), 898. 9 Zheng L G, Yang H Y.Acta Physico-Chimica Sinica, 2010, 26(9), 2354 (in Chinese). 郑雷刚, 杨怀玉. 物理化学学报, 2010, 26(9), 2354. 10 Zhou X, Yang H Y, Wang F H.Acta Physico-Chimica Sinica, 2011, 27(3), 647 (in Chinese). 周欣, 杨怀玉, 王福会. 物理化学学报, 2011, 27(3), 647. 11 Ma Q, Qi S J, He X, et al. Corrosion Science, 2017, 129, 91. 12 Dutta A, Saha S K, Banerjee P, et al.Corrosion Science, 2015, 98, 541. 13 Kıcır N, Tansuğ G, Erbil M, et al. Corrosion Science, 2016, 105, 88. 14 Liu Z Y, Miao C W, Sun W. Journal of the Chinese Ceramic Society, 2010, 38(7), 1323 (in Chinese). 刘志勇, 缪昌文, 孙伟. 硅酸盐学报, 2010, 38(7), 1323. 15 Wang W, Zhang D Q, Zhang W Y, et al. Corrosion & Protection, 2006, 27(7), 369 (in Chinese). 王嵬, 张大全, 张万友, 等. 腐蚀与防护, 2006, 27(7), 369. 16 Lin B, Zuo Y.RSC Advances, 2019, 9, 7065. 17 Ormellese M, Lazzari L, Goidanich S, et al.Corrosion Science, 2009, 51, 2959. 18 Martinez S, Valek L, Oslaković I S. Journal of The Electrochemical Society, 2007, 154(11), C671. 19 Jmiai A, Ibrahimi B E, Tara A, et al.Journal of Molecular Structure, 2018, 1157, 408. 20 El-Haddad M N.Carbohydrate Polymers, 2014, 112(2), 595. 21 Tan J H, Guo L, Yang H, et al. Rsc Advances, 2020, 10, 15163. 22 Yang R J, Guo Y, Tang F M, et al. Acta Physico-Chimica Sinica, 2012, 28(8), 1923 (in Chinese). 杨榕杰, 郭亚, 唐方苗, 等. 物理化学学报, 2012, 28(8), 1923. 23 Shalabi K, Nazeer A A.Journal of Molecular Structure, 2019, 1195, 863. 24 Zeino A, Abdulazeez I, Khaled M, et al. Journal of Molecular Liquids, 2018, 250, 50. 25 Fei F L, Hu J, Wei J X, et al. Construction and Building Materials, 2014, 70, 43. 26 Feng L, Yang H, Wang F.Electrochimica Acta, 2011, 58, 427. 27 Song W W, Zhang J, Du M. Acta Chimica Sinica, 2011, 69(16), 1851 (in Chinese). 宋伟伟, 张静, 杜敏. 化学学报, 2011, 69(16), 1851. 28 Joiret S, Keddam M, Nóvoa X R, et al. Cement & Concrete Composites, 2002, 24, 7. 29 Saker S, Aliouane N, Hammache H, et al. Ionics, 2015, 21, 2079. 30 Ma Q, Cai J S, Mu S, et al. Journal of the Chinese Ceramic Society, 2021, 49(5), 940 (in Chinese). 马麒, 蔡景顺, 穆松, 等. 硅酸盐学报, 2021, 49(5), 940. 31 Saleh M M, Atia A A. Journal of Applied Electrochemistry, 2006, 36(8), 899. 32 Herrag L, Hammouti B, Elkadiri S, et al. Corrosion Science, 2010, 52(9), 3042. 33 Pearson R G.Journal of the American Chemical Society, 1963, 85(22), 3533. 34 Aramaki K, Shimura T.Corrosion Science, 2003, 45, 2639. 35 Fang J, Li J. Journal of Molecular Structure Theochem, 2002, 593, 179.