Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21050285-8    https://doi.org/10.11896/cldb.21050285
  金属与金属基复合材料 |
羧酸胺阻锈剂在模拟孔隙液和混凝土中对钢筋的阻锈作用
马麒1,2, 蔡景顺1,2, 穆松1,2,*, 刘凯1,2, 刘建忠1,2, 刘加平1,2,3
1 江苏省建筑科学研究院有限公司,高性能土木工程材料国家重点实验室,南京 210008
2 江苏苏博特新材料股份有限公司, 南京 211103
3 东南大学材料科学与工程学院, 南京 211189
Carboxylamine Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Concrete Specimen
MA Qi1,2, CAI Jingshun1,2, MU Song1,2,*, LIU Kai1,2, LIU Jianzhong1,2, LIU Jiaping1,2,3
1 State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science Co., Ltd., Nanjing 210008, China
2 Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
3 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 11603KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用线性极化(LPR)、动电位极化(PDP)、电化学阻抗谱(EIS)、扫描电子显微镜(SEM)以及混凝土盐水浸烘循环试验,研究了有机羧酸胺阻锈剂(ZX)和三乙烯四胺(TETA)在混凝土模拟孔隙液及混凝土中对钢筋的阻锈作用。结果表明:有机羧酸胺阻锈剂在混凝土模拟孔隙液中可明显抑制钢筋的锈蚀,且随着阻锈剂掺量的增加,阻锈效果越明显。而且有机羧酸胺阻锈剂中的N、O原子能与Fe原子配位成键,强吸附于金属表面,阻止腐蚀过程中电荷转移,抑制金属腐蚀。当掺量为0.30%时,ZX阻锈效率已达90%以上,而三乙烯四胺的阻锈效率为63.74%,在低掺量下ZX抑制钢筋锈蚀的效果明显优于TETA;在混凝土盐水浸烘循环试验中,空白混凝土中钢筋的锈蚀面积百分率超过30%,加入0.60%TETA其锈蚀面积百分率为15.54%,而加入0.60%ZX的钢筋锈蚀面积百分率仅为0.80%,ZX在混凝土试块中亦有良好的阻锈效果。因此,在混凝土中加入有机羧酸胺阻锈剂可提高混凝土结构耐久性,延长其服役寿命。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马麒
蔡景顺
穆松
刘凯
刘建忠
刘加平
关键词:  有机羧酸胺  三乙烯四胺  阻锈剂  混凝土  电化学  耐久性    
Abstract: In this work, the inhibited effect of organic carboxylamine (ZX) and triethylenetetramine (TETA) in simulated concrete pore solution and concrete was studied through linear polarization (LPR), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and concrete-salt water dry-wet cycle test. The results show that the organic carboxylamine corrosion inhibitor can obviously inhibit the reinforced corrosion in simulated concrete pore solution. As the dosage of inhibitor increases, the inhibited effect is better. Because the N and O atoms in organic carboxylamine corrosion inhibitor adsorb on the metal surface, this organic inhibitor not only can coordinate with Fe atoms to form strongly bonds, but also prevent the charge transfer in the metal corrosion process. When the addition is 0.30wt%, the inhibition efficiency of ZX is more than 90% and the inhibition efficiency of triethylenetetramine is 63.74%. The inhibited effect of ZX is obviously better than TETA at low dosage. Further, the reinforced corrosion area in the blank group reaches more than 30%, while the corrosion area is 15.54% with 0.60wt%TETA group and 0.80% with the ZX. Carboxylamine is better inhibition effect in concrete. It can be concluded that adding organic carboxylamine corrosion inhibitor into concrete can improve the concrete structure durability and prolong the service life.
Key words:  organic carboxylamine    triethylenetetramine    corrosion inhibitor    concrete    electrochemistry    durability
发布日期:  2022-12-09
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51908254);广东省重点领域研发计划项目(2019B111106002)
通讯作者:  *musong@cnjsjk.cn   
作者简介:  马麒,南京工业大学硕士。2018年毕业于南京工业大学应用化学专业,现为江苏苏博特新材料股份有限公司苏博特研究院工程师。主要从事钢筋锈蚀与混凝土结构耐久性的研究。
穆松, 博士,高级工程师。2012年获武汉理工大学建筑材料与工程专业博士学位,现任江苏苏博特新材料股份有限公司苏博特研究院副院长。从事严酷环境下结构混凝土耐久性设计与提升技术研究与应用。获授权发明专利23 项,发表SCI、EI 收录论文25 篇。
引用本文:    
马麒, 蔡景顺, 穆松, 刘凯, 刘建忠, 刘加平. 羧酸胺阻锈剂在模拟孔隙液和混凝土中对钢筋的阻锈作用[J]. 材料导报, 2022, 36(23): 21050285-8.
MA Qi, CAI Jingshun, MU Song, LIU Kai, LIU Jianzhong, LIU Jiaping. Carboxylamine Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Concrete Specimen. Materials Reports, 2022, 36(23): 21050285-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050285  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21050285
1 Pan F, Dang F N, Jiao K, et al. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2), 3948 (in Chinese).
潘峰, 党发宁, 焦凯, 等. 岩石力学与工程学报, 2015, 34(S2), 3948.
2 Chen W, Du R G, Hu R G, et al. Acta Metallurgica Sinica, 2011, 47(6), 735 (in Chinese).
陈雯, 杜荣归, 胡融刚, 等. 金属学报, 2011, 47(6), 735.
3 Adam J M, Parisi F, Sagaseta J, et al.Engineering Structures, 2018, 173, 122.
4 Otieno M B, Beushausen H D, Alexander M G.Cement & Concrete Composites, 2011, 33, 240.
5 Moradi-Marani F, Shekarchi M, Dousti A, et al.Journal of Performance of Constructed Facilities, 2010, 24(4), 294.
6 Al-Amoudi O S B, Maslehuddin M, Lashari A N, et al.Cement & Concrete Composites, 2003, 25, 439.
7 Ormellese M, Berra M, Bolzoni F, et al. Cement and Concrete Research, 2006, 36, 536.
8 Cao F T, Wei J, Dong J H, et al.Acta Metallurgica Sinica, 2020, 56(6), 898 (in Chinese).
曹凤婷, 魏洁, 董俊华, 等. 金属学报, 2020, 56(6), 898.
9 Zheng L G, Yang H Y.Acta Physico-Chimica Sinica, 2010, 26(9), 2354 (in Chinese).
郑雷刚, 杨怀玉. 物理化学学报, 2010, 26(9), 2354.
10 Zhou X, Yang H Y, Wang F H.Acta Physico-Chimica Sinica, 2011, 27(3), 647 (in Chinese).
周欣, 杨怀玉, 王福会. 物理化学学报, 2011, 27(3), 647.
11 Ma Q, Qi S J, He X, et al. Corrosion Science, 2017, 129, 91.
12 Dutta A, Saha S K, Banerjee P, et al.Corrosion Science, 2015, 98, 541.
13 Kıcır N, Tansuğ G, Erbil M, et al. Corrosion Science, 2016, 105, 88.
14 Liu Z Y, Miao C W, Sun W. Journal of the Chinese Ceramic Society, 2010, 38(7), 1323 (in Chinese).
刘志勇, 缪昌文, 孙伟. 硅酸盐学报, 2010, 38(7), 1323.
15 Wang W, Zhang D Q, Zhang W Y, et al. Corrosion & Protection, 2006, 27(7), 369 (in Chinese).
王嵬, 张大全, 张万友, 等. 腐蚀与防护, 2006, 27(7), 369.
16 Lin B, Zuo Y.RSC Advances, 2019, 9, 7065.
17 Ormellese M, Lazzari L, Goidanich S, et al.Corrosion Science, 2009, 51, 2959.
18 Martinez S, Valek L, Oslaković I S. Journal of The Electrochemical Society, 2007, 154(11), C671.
19 Jmiai A, Ibrahimi B E, Tara A, et al.Journal of Molecular Structure, 2018, 1157, 408.
20 El-Haddad M N.Carbohydrate Polymers, 2014, 112(2), 595.
21 Tan J H, Guo L, Yang H, et al. Rsc Advances, 2020, 10, 15163.
22 Yang R J, Guo Y, Tang F M, et al. Acta Physico-Chimica Sinica, 2012, 28(8), 1923 (in Chinese).
杨榕杰, 郭亚, 唐方苗, 等. 物理化学学报, 2012, 28(8), 1923.
23 Shalabi K, Nazeer A A.Journal of Molecular Structure, 2019, 1195, 863.
24 Zeino A, Abdulazeez I, Khaled M, et al. Journal of Molecular Liquids, 2018, 250, 50.
25 Fei F L, Hu J, Wei J X, et al. Construction and Building Materials, 2014, 70, 43.
26 Feng L, Yang H, Wang F.Electrochimica Acta, 2011, 58, 427.
27 Song W W, Zhang J, Du M. Acta Chimica Sinica, 2011, 69(16), 1851 (in Chinese).
宋伟伟, 张静, 杜敏. 化学学报, 2011, 69(16), 1851.
28 Joiret S, Keddam M, Nóvoa X R, et al. Cement & Concrete Composites, 2002, 24, 7.
29 Saker S, Aliouane N, Hammache H, et al. Ionics, 2015, 21, 2079.
30 Ma Q, Cai J S, Mu S, et al. Journal of the Chinese Ceramic Society, 2021, 49(5), 940 (in Chinese).
马麒, 蔡景顺, 穆松, 等. 硅酸盐学报, 2021, 49(5), 940.
31 Saleh M M, Atia A A. Journal of Applied Electrochemistry, 2006, 36(8), 899.
32 Herrag L, Hammouti B, Elkadiri S, et al. Corrosion Science, 2010, 52(9), 3042.
33 Pearson R G.Journal of the American Chemical Society, 1963, 85(22), 3533.
34 Aramaki K, Shimura T.Corrosion Science, 2003, 45, 2639.
35 Fang J, Li J. Journal of Molecular Structure Theochem, 2002, 593, 179.
[1] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[2] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[3] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[4] 陈燕强, 钱春香, 张健. 材料参数对清水混凝土表观气孔控制的影响[J]. 材料导报, 2022, 36(Z1): 22030021-9.
[5] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[6] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[7] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[8] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[9] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[10] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[11] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[12] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[13] 尹道道, 王海, 张珍杰, 向飞, 王海龙, 纪宪坤. 室外环境下不同尺寸混凝土中膨胀剂的应用效果研究[J]. 材料导报, 2022, 36(Z1): 21110148-4.
[14] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[15] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed