Effects of Tungsten Transmutation Elements Rhenium and Osmium on Properties of Tungsten Material as the Plasma-facing Materials for Fusion Devices
WU Boyu1,2, XU Yuping2, LYU Yiming2,3, LU Peng2, LI Xiaochun2, ZHOU Haishan2, LIU Songlin2, LUO Guangnan2,3
1 Institute of Materials Science and Information Technology, Anhui University, Hefei 230039, China 2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China 3 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
Abstract: Tungsten (W) is considered to be the most promising plasma-facing material for fusion devices, because of its excellent properties such as high melting point, high density, low thermal expansion coefficient, low tritium retention, and low sputtering yield. 14 MeV neutrons from the D-T fusion reaction will lead to the generation of transmutation elements Rhenium (Re) and Osmium (Os). With the service time increases, the transmutation elements will accumulate. These two transmutation elements are bound to affect the microstructure of the tungsten and thus affect the performance of tungsten material. In this work, the effects of tungsten transmutation elements Re and Os on the properties of fusion device plasma-facing tungsten material were summarized, including mechanical properties, anti-irradiation properties, thermal properties, and hydrogen isotope transport behavior in tungsten. The results show that the Re and Os can make a huge change in the properties of tungsten materials. However, the relevant research is currently trivial. In the future, more systematic conclusions are needed to fully evaluate the performance of fusion device plasma-facing tungsten material under irradiation.
作者简介: 吴博宇,2019年6月毕业于上海第二工业大学,获得工学学士学位。现为安徽大学物质科学与信息技术研究院硕士研究生,在罗广南研究员和徐玉平助理研究员的协同指导下进行研究。目前主要研究领域为嬗变元素对钨中氢同位素输运行为的影响。徐玉平,中国科学院合肥物质科学研究院等离子体物理研究所助理研究员,国家博士后创新人才支持计划获得者。2012年本科毕业于西北工业大学, 2017年在中国科学技术大学/中科院等离子体物理研究所取得核能科学与工程博士学位,2017—2019年在中国中科院合肥物质科学研究院进行博士后工作。长期从事聚变材料与氢同位素相互作用研究。在聚变领域专业期刊以第一作者/通讯作者发表论文10余篇,包括Nuclear Fusion、Journal of Nuclear Materials等。
引用本文:
吴博宇, 徐玉平, 吕一鸣, 卢棚, 李小椿, 周海山, 刘松林, 罗广南. 嬗变元素Re、Os对聚变装置面向等离子体钨材料性能的影响[J]. 材料导报, 2021, 35(1): 1154-1161.
WU Boyu, XU Yuping, LYU Yiming, LU Peng, LI Xiaochun, ZHOU Haishan, LIU Songlin, LUO Guangnan. Effects of Tungsten Transmutation Elements Rhenium and Osmium on Properties of Tungsten Material as the Plasma-facing Materials for Fusion Devices. Materials Reports, 2021, 35(1): 1154-1161.
1 Luo L M, Shi J, Lin J S, et al. Scientific Reports,2016,6,32701. 2 Xu Y P, Lyu Y M, Zhou H S, et al. Materials Reports A:Review Papers,2018,32(9),2897(in Chinese). 徐玉平,吕一鸣,周海山,等.材料导报:综述篇,2018,32(9),2897. 3 Ding X Y, Li H, Luo L M, et al. Materials for Mechanical Engineering,2013,37(11),6(in Chinese). 丁孝禹,李浩,罗来马,等.机械工程材料,2013,37(11),6. 4 Lyu G H, Luo G N, Li J G. Materials China,2010,29(7),42(in Chinese). 吕广宏,罗广南,李建刚.中国材料进展,2010,29(7),42. 5 http://www.iter.org. 6 Gao X, Wan B N, Song Y T, et al. Scientia Sinica Pysica,Mechanica & Astronomica,2019,49(4),7(in Chinese). 高翔,万宝年,宋云涛,等.中国科学:物理学力学天文学,2019,49(4),7. 7 Wan Y, Li J, Liu Y, et al. Nuclear Fusion,2017,57(10),102009. 8 Rieth M, Dudarev S L, Gonzalez S M. Journal of Nuclear Materials,2013,432(1),482. 9 Pitts R A, Carpentier S, Escourbiac F, et al. Journal of Nuclear Mate-rials,2011,415(1),957. 10 Raffray A R, Nygren R, Whyte D G, et al. Fusion Engineering and Design,2010,85(1),93. 11 Ding Xiaoyu,Luo Laima,Huang Limei, et al. Chinese Journal of Rare Metals, DOI:10.13373/j.cnki.cjrm.2015.12.012. 12 Song G M, Zhou Y, Wang Y J. Journal of Materials Science,2002,37(16),3541. 13 Song G M, Wang Y J, Zhou Y. Materials Science & Engineering A,2002,334(1),223. 14 Luo L, Lu Z, Li H, et al. Chinese Journal of Rare Metals,2013,11(6),993. 15 Liu F, Luo G N, Li Q, et al. China Tungsten Industry,2017,32(2),41(in Chinese). 刘凤,罗广南,李强,等.中国钨业,2017,32(2),41. 16 Bulletin M. MRS Bulletin,2011,36,17. 17 Pintsuk G. Comprehensive Nuclear Materials, DOI:10.1016/B978-0-08-056033-5.00118-X. 18 Gilbert M R, et al. Nuclear Fusion,2011,51(4),043005. 19 Qiang Z, Zheng Z, Mei H, et al. Computational Materials Science,2019,162,133. 20 Noda T, Fujita M, Okada M. Journal of Nuclear Materials,1998,258,934. 21 Tanno T, Hasegawa A, He J, et al. Journal of Nuclear Materials,2009,386,218. 22 He J C, Hasegawa A, Fujiwara M, et al. Materials Transactions,2004,45(8),2657. 23 Pugh S F. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1954,45(367),823. 24 Geach G A, Hughes J E. Plansee Proceedings P,1956,1,245. 25 Becquart C S, Domain C. Nuclear Instruments & Methods in Physics Research,2007,255(1),23. 26 Li X, SchöNecker S, Li R, et al. Journal of Physics: Condensed Matter,2016,28(29),295501. 27 Jiang D, Wang Q, Hu W, et al. Journal of Materials Research,2016,31(21),3401. 28 Jiang D, Zhou Q, Xue L, et al. Fusion Engineering & Design,2018,130,56. 29 Xu A, Beck C, Armstrong D E J, et al. Acta Materialia,2015,87,121. 30 Hasegawa A, Fukuda M, Nogami S, et al. Fusion Engineering and Design,2014,89(7),1568. 31 He J C, Tang G Y, Hasegawa A, et al. Nuclear Fusion,2006,46(11),877. 32 Hasegawa A, Tanno T, Nogami S, et al. Journal of Nuclear Materials,2011,417(1),491. 33 Nemoto Y, Hasegawa A, Satou M, et al. Journal of Nuclear Materials,2000,283,1144. 34 Fukuda M, Hasegawa A, Tanno T, et al. Journal of Nuclear Materials,2013,442(1),S273. 35 Tanno T, Hasegawa A, He J C, et al. Materials Transactions,2007,48(9),2399. 36 Katoh Y, Snead L L, Garrison L M, et al. Journal of Nuclear Mate-rials,2019,520,193. 37 Fujitsuka M, Tsuchiya B, Mutoh I, et al. Journal of Nuclear Materials,2000,283,1148. 38 Roedig M, Kuehnlein W, Linke J, et al. Journal of Nuclear Materials,2004,329,766. 39 Peacock A T, Barabash V, Danner W, et al. Journal of Nuclear Mate-rials,2004,329,173. 40 Tanabe T, Eamchotchawalit C, Busabok C, et al. Materials Letters,2003,57(19),2953. 41 Smid I, Akiba M, Vieider G, et al. Journal of Nuclear Materials,1999,258(4),160. 42 Williams R K, Wiffen F W, Bentley J, et al. Metallurgical Transactions A,1983,14(3),655. 43 Esteban G A, Perujo A, Sedano L A, et al. Journal of Nuclear Materials,2001,295(1),49. 44 Roth J, Tsitrone E, Loarte A, et al. Journal of Nuclear Materials,2009,390(1),1. 45 Bernard E, Sakamoto R, Kreter A, et al. Physica Scripta,2017,T170,014023. 46 Tanabe T. In: 14th International Conference on Plasma-Facing Material and Components. Germany,2014,pp.014044. 47 Ren F. Behaviors of hydrogen, helium and transmutation elements in tungsten-based materials. Master's Thesis, Lanzhou University, China,2018(in Chinese). 任飞.氢氦及嬗变元素在钨基材料中的行为.硕士学位论文,兰州大学,2018. 48 Tyburska-Püschel, B, Alimov V K. Nuclear Fusion,2013,53(12),123021. 49 Golubeva A V, Mayer M, Roth J, et al. Journal of Nuclear Materials,2007,363,893. 50 Tyburska B, Alimov V K, Ogorodnikova O V, et al. Journal of Nuclear Materials,2011,415(1),S680. 51 Ma F F, Wang W W, Li Y H, et al. Nuclear Fusion,2018,58(9),096026. 52 Heinola K, Ahlgren T. Journal of Applied Physics,2010,107(11),113531. 53 Kong X S, Wang S, Wu X, et al. Acta Materialia,2015,84,426. 54 Zakharov A P, Sharapov V M. Soviet Materials Science,1975,9(2),149. 55 Frauenfelder R. Journal of Vacuum Science and Technology,1969,6(3),388. 56 Benamati G, Serra E, Wu C H. Journal of Nuclear Materials,2000,283(4),1033. 57 Wróbel, J S, Nguyen-Manh D, Kurzydłowski K J, et al. Journal of Phy-sics: Condensed Matter,2017,29(14),145403. 58 Li Y H, Zhou H B, Jin S, et al. Nuclear Fusion,2017,57(4),046006.