Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1154-1161    https://doi.org/10.11896/cldb.20050162
  金属与金属基复合材料 |
嬗变元素Re、Os对聚变装置面向等离子体钨材料性能的影响
吴博宇1,2, 徐玉平2, 吕一鸣2,3, 卢棚2, 李小椿2, 周海山2, 刘松林2, 罗广南2,3
1 安徽大学物质科学与信息技术研究院, 合肥 230039
2 中国科学院等离子体物理研究所, 合肥 230031
3 中国科学技术大学科学岛分院, 合肥 230026
Effects of Tungsten Transmutation Elements Rhenium and Osmium on Properties of Tungsten Material as the Plasma-facing Materials for Fusion Devices
WU Boyu1,2, XU Yuping2, LYU Yiming2,3, LU Peng2, LI Xiaochun2, ZHOU Haishan2, LIU Songlin2, LUO Guangnan2,3
1 Institute of Materials Science and Information Technology, Anhui University, Hefei 230039, China
2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
3 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
下载:  全 文 ( PDF ) ( 10405KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钨(W)由于具有高熔点、高密度、低热膨胀系数、低氚滞留、低溅射产额等优异性能,被认为是最有潜力的聚变装置面向等离子体材料。氘氚聚变反应产生的14 MeV中子会导致W中嬗变元素铼(Re)、锇(Os)的产生,随着服役时间的延长,嬗变元素不断累积。这两种嬗变元素的产生势必会影响到W材料的微观组织结构,进而对W材料的性能产生影响。本文全面介绍了W嬗变元素Re、Os对聚变装置面向等离子体W材料的关键服役性能的影响,包括对力学性能、抗辐照性能、热学性能以及钨中氢同位素输运行为的影响。结果表明,W嬗变元素Re、Os能对W材料的性能造成较大的改变,但目前相关的研究都不够系统化,未来还需进行更为系统的研究来全面地对中子辐照条件下聚变装置面向等离子体W材料的性能进行评估。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴博宇
徐玉平
吕一鸣
卢棚
李小椿
周海山
刘松林
罗广南
关键词:    嬗变  面向等离子体材料        
Abstract: Tungsten (W) is considered to be the most promising plasma-facing material for fusion devices, because of its excellent properties such as high melting point, high density, low thermal expansion coefficient, low tritium retention, and low sputtering yield. 14 MeV neutrons from the D-T fusion reaction will lead to the generation of transmutation elements Rhenium (Re) and Osmium (Os). With the service time increases, the transmutation elements will accumulate. These two transmutation elements are bound to affect the microstructure of the tungsten and thus affect the performance of tungsten material. In this work, the effects of tungsten transmutation elements Re and Os on the properties of fusion device plasma-facing tungsten material were summarized, including mechanical properties, anti-irradiation properties, thermal properties, and hydrogen isotope transport behavior in tungsten. The results show that the Re and Os can make a huge change in the properties of tungsten materials. However, the relevant research is currently trivial. In the future, more systematic conclusions are needed to fully evaluate the performance of fusion device plasma-facing tungsten material under irradiation.
Key words:  tungsten    transmutation    plasma-facing material    rhenium    osmium
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TG146  
基金资助: 国家重点研发磁约束核聚变能发展研究专项(2018YFE0308102);国家自然科学基金(11905246;11975260);中国科学院合肥大科学中心“高端用户培育基金”(2018HSC-UE006)
作者简介:  吴博宇,2019年6月毕业于上海第二工业大学,获得工学学士学位。现为安徽大学物质科学与信息技术研究院硕士研究生,在罗广南研究员和徐玉平助理研究员的协同指导下进行研究。目前主要研究领域为嬗变元素对钨中氢同位素输运行为的影响。徐玉平,中国科学院合肥物质科学研究院等离子体物理研究所助理研究员,国家博士后创新人才支持计划获得者。2012年本科毕业于西北工业大学, 2017年在中国科学技术大学/中科院等离子体物理研究所取得核能科学与工程博士学位,2017—2019年在中国中科院合肥物质科学研究院进行博士后工作。长期从事聚变材料与氢同位素相互作用研究。在聚变领域专业期刊以第一作者/通讯作者发表论文10余篇,包括Nuclear Fusion、Journal of Nuclear Materials等。
引用本文:    
吴博宇, 徐玉平, 吕一鸣, 卢棚, 李小椿, 周海山, 刘松林, 罗广南. 嬗变元素Re、Os对聚变装置面向等离子体钨材料性能的影响[J]. 材料导报, 2021, 35(1): 1154-1161.
WU Boyu, XU Yuping, LYU Yiming, LU Peng, LI Xiaochun, ZHOU Haishan, LIU Songlin, LUO Guangnan. Effects of Tungsten Transmutation Elements Rhenium and Osmium on Properties of Tungsten Material as the Plasma-facing Materials for Fusion Devices. Materials Reports, 2021, 35(1): 1154-1161.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050162  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1154
1 Luo L M, Shi J, Lin J S, et al. Scientific Reports,2016,6,32701.
2 Xu Y P, Lyu Y M, Zhou H S, et al. Materials Reports A:Review Papers,2018,32(9),2897(in Chinese).
徐玉平,吕一鸣,周海山,等.材料导报:综述篇,2018,32(9),2897.
3 Ding X Y, Li H, Luo L M, et al. Materials for Mechanical Engineering,2013,37(11),6(in Chinese).
丁孝禹,李浩,罗来马,等.机械工程材料,2013,37(11),6.
4 Lyu G H, Luo G N, Li J G. Materials China,2010,29(7),42(in Chinese).
吕广宏,罗广南,李建刚.中国材料进展,2010,29(7),42.
5 http://www.iter.org.
6 Gao X, Wan B N, Song Y T, et al. Scientia Sinica Pysica,Mechanica & Astronomica,2019,49(4),7(in Chinese).
高翔,万宝年,宋云涛,等.中国科学:物理学力学天文学,2019,49(4),7.
7 Wan Y, Li J, Liu Y, et al. Nuclear Fusion,2017,57(10),102009.
8 Rieth M, Dudarev S L, Gonzalez S M. Journal of Nuclear Materials,2013,432(1),482.
9 Pitts R A, Carpentier S, Escourbiac F, et al. Journal of Nuclear Mate-rials,2011,415(1),957.
10 Raffray A R, Nygren R, Whyte D G, et al. Fusion Engineering and Design,2010,85(1),93.
11 Ding Xiaoyu,Luo Laima,Huang Limei, et al. Chinese Journal of Rare Metals, DOI:10.13373/j.cnki.cjrm.2015.12.012.
12 Song G M, Zhou Y, Wang Y J. Journal of Materials Science,2002,37(16),3541.
13 Song G M, Wang Y J, Zhou Y. Materials Science & Engineering A,2002,334(1),223.
14 Luo L, Lu Z, Li H, et al. Chinese Journal of Rare Metals,2013,11(6),993.
15 Liu F, Luo G N, Li Q, et al. China Tungsten Industry,2017,32(2),41(in Chinese).
刘凤,罗广南,李强,等.中国钨业,2017,32(2),41.
16 Bulletin M. MRS Bulletin,2011,36,17.
17 Pintsuk G. Comprehensive Nuclear Materials, DOI:10.1016/B978-0-08-056033-5.00118-X.
18 Gilbert M R, et al. Nuclear Fusion,2011,51(4),043005.
19 Qiang Z, Zheng Z, Mei H, et al. Computational Materials Science,2019,162,133.
20 Noda T, Fujita M, Okada M. Journal of Nuclear Materials,1998,258,934.
21 Tanno T, Hasegawa A, He J, et al. Journal of Nuclear Materials,2009,386,218.
22 He J C, Hasegawa A, Fujiwara M, et al. Materials Transactions,2004,45(8),2657.
23 Pugh S F. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1954,45(367),823.
24 Geach G A, Hughes J E. Plansee Proceedings P,1956,1,245.
25 Becquart C S, Domain C. Nuclear Instruments & Methods in Physics Research,2007,255(1),23.
26 Li X, SchöNecker S, Li R, et al. Journal of Physics: Condensed Matter,2016,28(29),295501.
27 Jiang D, Wang Q, Hu W, et al. Journal of Materials Research,2016,31(21),3401.
28 Jiang D, Zhou Q, Xue L, et al. Fusion Engineering & Design,2018,130,56.
29 Xu A, Beck C, Armstrong D E J, et al. Acta Materialia,2015,87,121.
30 Hasegawa A, Fukuda M, Nogami S, et al. Fusion Engineering and Design,2014,89(7),1568.
31 He J C, Tang G Y, Hasegawa A, et al. Nuclear Fusion,2006,46(11),877.
32 Hasegawa A, Tanno T, Nogami S, et al. Journal of Nuclear Materials,2011,417(1),491.
33 Nemoto Y, Hasegawa A, Satou M, et al. Journal of Nuclear Materials,2000,283,1144.
34 Fukuda M, Hasegawa A, Tanno T, et al. Journal of Nuclear Materials,2013,442(1),S273.
35 Tanno T, Hasegawa A, He J C, et al. Materials Transactions,2007,48(9),2399.
36 Katoh Y, Snead L L, Garrison L M, et al. Journal of Nuclear Mate-rials,2019,520,193.
37 Fujitsuka M, Tsuchiya B, Mutoh I, et al. Journal of Nuclear Materials,2000,283,1148.
38 Roedig M, Kuehnlein W, Linke J, et al. Journal of Nuclear Materials,2004,329,766.
39 Peacock A T, Barabash V, Danner W, et al. Journal of Nuclear Mate-rials,2004,329,173.
40 Tanabe T, Eamchotchawalit C, Busabok C, et al. Materials Letters,2003,57(19),2953.
41 Smid I, Akiba M, Vieider G, et al. Journal of Nuclear Materials,1999,258(4),160.
42 Williams R K, Wiffen F W, Bentley J, et al. Metallurgical Transactions A,1983,14(3),655.
43 Esteban G A, Perujo A, Sedano L A, et al. Journal of Nuclear Materials,2001,295(1),49.
44 Roth J, Tsitrone E, Loarte A, et al. Journal of Nuclear Materials,2009,390(1),1.
45 Bernard E, Sakamoto R, Kreter A, et al. Physica Scripta,2017,T170,014023.
46 Tanabe T. In: 14th International Conference on Plasma-Facing Material and Components. Germany,2014,pp.014044.
47 Ren F. Behaviors of hydrogen, helium and transmutation elements in tungsten-based materials. Master's Thesis, Lanzhou University, China,2018(in Chinese).
任飞.氢氦及嬗变元素在钨基材料中的行为.硕士学位论文,兰州大学,2018.
48 Tyburska-Püschel, B, Alimov V K. Nuclear Fusion,2013,53(12),123021.
49 Golubeva A V, Mayer M, Roth J, et al. Journal of Nuclear Materials,2007,363,893.
50 Tyburska B, Alimov V K, Ogorodnikova O V, et al. Journal of Nuclear Materials,2011,415(1),S680.
51 Ma F F, Wang W W, Li Y H, et al. Nuclear Fusion,2018,58(9),096026.
52 Heinola K, Ahlgren T. Journal of Applied Physics,2010,107(11),113531.
53 Kong X S, Wang S, Wu X, et al. Acta Materialia,2015,84,426.
54 Zakharov A P, Sharapov V M. Soviet Materials Science,1975,9(2),149.
55 Frauenfelder R. Journal of Vacuum Science and Technology,1969,6(3),388.
56 Benamati G, Serra E, Wu C H. Journal of Nuclear Materials,2000,283(4),1033.
57 Wróbel, J S, Nguyen-Manh D, Kurzydłowski K J, et al. Journal of Phy-sics: Condensed Matter,2017,29(14),145403.
58 Li Y H, Zhou H B, Jin S, et al. Nuclear Fusion,2017,57(4),046006.
[1] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[2] 吴志锋, 韩毅, 杨明明, 李国栋, 王忠杰, 刘良, 谢文明. 柔性钨橡胶对手套箱管线辐射热点的屏蔽效果研究[J]. 材料导报, 2020, 34(Z2): 572-575.
[3] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[4] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[5] 张春伟, 孙元, 唐俊杰, 房大维. 工业废料中铼元素的回收与再利用研究进展[J]. 材料导报, 2020, 34(15): 15145-15152.
[6] 曹明星, 马立文, 王志宏. 碲属线性巨磁阻材料研究进展[J]. 材料导报, 2020, 34(13): 13131-13138.
[7] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[8] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[9] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[10] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[11] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[12] 马容, 张兆春, 郭海波, 谢耀平. 锂氦在钨中的行为及其对钨力学和热力学性质影响的第一性原理研究[J]. 材料导报, 2019, 33(24): 4164-4169.
[13] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[14] 赵林艳, 席晓丽, 樊佑书, 马立文. 纳米氧化钨的水热/溶剂热法制备及应用的综述[J]. 材料导报, 2019, 33(19): 3203-3209.
[15] 张睿, 顾晓龙, 庞欢. 新型异金属三羰基铼配合物的合成及光学性质研究[J]. 《材料导报》期刊社, 2018, 32(8): 1252-1257.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed