Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10073-10079    https://doi.org/10.11896/cldb.20020023
  无机非金属及其复合材料 |
沥青路面超疏水抗凝冰涂层设计及性能
张争奇1, 强亚奎1, 张世豪1,2, 王东3, 赵富强3
1 长安大学,特殊地区公路工程教育部重点实验室,西安 710064
2 河南省交通规划设计研究院股份有限公司,郑州 450046
3 陕西省高速公路建设集团公司,西安 710065
Design and Performance of Super-hydrophobic Anti-icing Coating on Asphalt Pavement
ZHANG Zhengqi1, QIANG Yakui1, ZHANG Shihao1,2, WANG Dong3, ZHAO Fuqiang3
1 Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064, China
2 Henan Provincial Communications Planning & Design Institute Co., Ltd, Zhengzhou 450046, China
3 Shaanxi Provincial Highway Expressway Construction Croup Co. Ltd.,Xi'an 710065, China
下载:  全 文 ( PDF ) ( 6213KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 超疏水涂层具有超强的疏水性能,用于沥青路面表面可以延缓路面结冰,具有良好的抗凝冰效果,但涂层存在易脱落、耐磨性差的缺点,导致融冰雪功能耐久性不足。为了提高超疏水抗凝冰涂层的表面稳定性和耐久性,本工作采用“功能层+粘结层”的复合式设计方案,通过试验研究了功能层和粘结层的材料构成及配比,并对复合式涂层的抗凝冰效果和表面稳定性进行了试验和评价。通过研究和分析,建议功能层采用疏水SiO2和Fe3O4进行纳米复合改性,以改善超疏水涂层耐磨性差及易反光的问题,并基于接触角和滚动角的测试结果,推荐抗磨耗填料SiO2和颜色调配料Fe3O4的最佳掺量分别为涂层浆体质量的2%和2.5%;建议粘结层采用环氧树脂混合体系以提高涂层与路面的附着力,并基于附着力试验结果,确定了混合体系中环氧树脂、固化剂及环氧增韧剂的最佳质量比为2∶1∶0.2。同时,通过SEM分析了各层的微观形貌,阐述了各层材料的作用机理。最后,复合式超疏水抗凝冰涂层的路用性能测试结果表明,复合式涂层稳定性和耐久性好,能够抵抗动水冲刷和冻融循环,且具有良好的抗凝冰性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张争奇
强亚奎
张世豪
王东
赵富强
关键词:  超疏水  抗凝冰  复合式涂层  抗磨高粘  路用性能    
Abstract: Super-hydrophobic coating has super-strong hydrophobic property, which can delay pavement icing and has good anti-icing effect when used on asphalt pavement surface. However, the coating has the disadvantages of easy falling off and poor wear resistance, resulting in insufficient durability of ice and snow melting function. In order to improve the surface stability and durability of super-hydrophobic anti-icing coa-ting, this paper adopts the composite design scheme of "functional layer + adhesive layer", studies the material composition and proportion of functional layer and adhesive layer through experiments, and tests and evaluates the anti-icing effect and surface stability of composite coating. Through research and analysis, the functional layer was suggested to adopt hydrophobic SiO2 and Fe3O4 for nano-composite modification to improve the poor wear resistance and easy reflection of super-hydrophobic coating. Based on the test results of contact angle and rolling angle, it is recommended that the optimal content of anti-wear filler SiO2 and color blending material Fe3O4 are 2% and 2.5% of slurry mass respectively. It is suggested to use epoxy resin mixed system to improve the adhesion between the coating and the road surface. Based on the adhesion test results, the optimal ratio of epoxy resin, curing agent and epoxy toughening agent in the mixed system is determined to be 2∶1∶0.2. At the same time, the microscopic morphology of each layer was analyzed by SEM, and the action mechanism of each layer of materials was expounded. Finally, the road performance test results of the composite super-hydrophobic anti-icing coating show that the composite coating has good stability and durability, can resist dynamic water scouring and freeze-thaw cycles, and has good anti-icing performance.
Key words:  super-hydrophobic    anti-icing    composite coating    wear resistance and high viscosity    pavement performance
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  U414  
基金资助: 国家自然科学基金(51008031)
通讯作者:  Z_Zhengqi@126.com   
作者简介:  张争奇,工学博士,长安大学教授,博士研究生导师。主要从事道路与铁道工程专业的教学与科研任务,路面材料与结构设计理论与方法、新型材料与结构的研究和推广、道路改造与维修技术、桥面铺装等方面的研究工作。先后主持科研项目30余项,其中国家级项目2项,省部级项目22项。获省部级科技进步三等奖8项,二等奖3项,在国内外重要期刊发表文章60多篇,获发明专利和实用新型专利30余项。
引用本文:    
张争奇, 强亚奎, 张世豪, 王东, 赵富强. 沥青路面超疏水抗凝冰涂层设计及性能[J]. 材料导报, 2021, 35(10): 10073-10079.
ZHANG Zhengqi, QIANG Yakui, ZHANG Shihao, WANG Dong, ZHAO Fuqiang. Design and Performance of Super-hydrophobic Anti-icing Coating on Asphalt Pavement. Materials Reports, 2021, 35(10): 10073-10079.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020023  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10073
1 Xiao Q Y, Hu H X, Wang L J, et al.Journal of Hebei University of Technology, 2012, 41 (4),64 (in Chinese) .
肖庆一,胡海学,王丽娟,等. 河北工业大学学报,2012,41(4), 64.
2 Kang J.The research on anticoagulant mixture of ice.Master's Thesis, Chongqing Jiaotong University, China,2011(in Chinese).
康捷.抗凝冰沥青混合料技术研究.硕士学位论文,重庆交通大学,2011.
3 Chou W,Liu J X,Zeng S.Surface Technology, 2012(6),108(in Chinese).
仇伟,刘见祥,曾舒.表面技术,2012(6),108.
4 YangB. Preparation of a super-hydrophobic self-cleaning coating for anti-icing transmission line. Master's Thesis, Chongqing University, China,2011(in Chinese).
杨斌.输电线路防覆冰用超疏水自清洁涂料的制备.硕士学位论文,重庆大学,2011.
5 GaoY L,Li X K.Materials Reports B: Research Papers,2017,31(7),132(in Chinese).
高英力,李学坤.材料导报:研究篇,2017,31(7),132.
6 Chen Y, Shan L Y, Tan Y Q, et al.Journal of Building Materials, 2014, 17 (2),340 (in Chinese).
陈瑶,单丽岩,谭忆秋,等.建筑材料学报,2014,17(2),340.
7 Ali Arabzadeh, Halil Ceylan.Transportation Research Record Journal of the Transportation Research Board,2016,1,10.
8 Jiang S L.Study on an environmental ice-deicing and snow-melting coat for asphalt pavement. Master's Thesis, Chang'an University, China,2012(in Chinese).
蒋松利.环保型沥青路面融冰雪涂层研究.硕士学位论文,长安大学,2012.
9 Li F J. Thin ice easy to remove type pavement coating application techno-logy research. Master's Thesis,Southeast University, China,2012(in Chinese).
李福建.薄冰易除型路面涂层应用技术研究.硕士学位论文,东南大学,2012.
10 Deng A J.Study of anticoagulant ice based on the hydrohobic surface of asphalt pavement. Master's Thesis,Southeast University,China,2013(in Chinese).
邓爱军.基于疏水表面的沥青路面抗凝冰性能研究.硕士学位论文,东南大学,2013.
11 Zheng M L, He L T..Journal of Traffic and Transportation Engineering,2013, 13(5),10. (in Chinese).
郑木莲,何利涛.交通运输工程学报, 2013, 13(5),10.
12 Lei J A,Zheng N X,Chen Z Y.Highway,2019,64(5),256(in Chinese).
雷俊安,郑南翔,陈朝阳.公路,2019,64(5),256.
[1] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[2] 余传明, 曾圣威, 刘叶原, 司徒紫晴, 刘可, 田丽芬, 罗文静, 梁远维, 李泳. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4): 4200-4204.
[3] 杨福生, 张振宇, 李云清, 陈永哲, 任永忠, 马乐, 杨武. 层层自组装法制备超疏水/超亲油棉织物及其油水分离性能[J]. 材料导报, 2021, 35(12): 12190-12195.
[4] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[5] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[6] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[7] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[8] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[9] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[10] 郑博源, 底月兰, 王海斗, 康嘉杰, 刘韬. 激光加工制备金属基体超疏水表面的研究进展[J]. 材料导报, 2020, 34(23): 23109-23120.
[11] 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
[12] 张静, 许海波, 黄悦, 周忠华. 双层透明耐磨超疏水膜层的制备及界面结构控制[J]. 材料导报, 2020, 34(12): 12005-12009.
[13] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[14] 商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备[J]. 材料导报, 2020, 34(10): 10003-10007.
[15] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed