Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23050204-9    https://doi.org/10.11896/cldb.23050204
  无机非金属及其复合材料 |
柔性氧化物薄膜晶体管栅绝缘层的研究进展
谭海星1, 林剑荣1, 黄培源1, 彭憬怡1, 刘思1, 陈建文1, 徐华2, 肖鹏1,*
1 佛山大学物理与光电工程学院,粤港澳智能微纳光电技术联合实验室,广东 佛山 528225
2 广州新视界光电科技有限公司,广州 510530
Research Progress of Gate Dielectric Layer for Flexible Oxide Thin-Film Transistors
TAN Haixing1, LIN Jianrong1, HUANG Peiyuan1, PENG Jingyi1, LIU Si1, CHEN Jianwen1, XU Hua2, XIAO Peng1,*
1 Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, Guangdong, China
2 Guangzhou Newvision Optoelectronic Technology Co., Ltd., Guangzhou 510530, China
下载:  全 文 ( PDF ) ( 27336KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性氧化物薄膜晶体管(Thin-film transistor,TFT)因具有迁移率高、电流开关比大、器件均一性好、柔韧性好和轻薄等优点而备受业界关注,广泛应用于柔性有机发光二极管(OLED)显示、柔性传感、仿生突触等领域。其中,栅绝缘层对柔性氧化物TFT的性能至关重要,它不仅影响着器件的基本电学性能,对器件的偏压、光照稳定性也有着明显的影响。因此,栅绝缘层材料及其制备工艺是实现高性能柔性氧化物TFT制备的关键。本工作综述了柔性氧化物TFT栅绝缘层的研究进展,首先介绍了几种典型的栅绝缘层薄膜制备技术;然后介绍了可应用于柔性氧化物TFT的栅绝缘层材料,包括无机高介电常数(高K)栅绝缘层材料(如氧化锆(ZrO2)、氧化铪(HfO2)和氧化铝(Al2O3))、有机栅绝缘层材料(如聚乙烯吡咯烷酮(PVP)、聚甲基丙烯酸甲酯(PMMA)和聚乙烯醇(PVA))以及双电层电解质栅绝缘层材料,并论述了几种栅绝缘层材料的优缺点;最后对柔性氧化物TFT的栅绝缘层技术特点和应用进行了总结,并对未来栅绝缘层技术的发展和研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭海星
林剑荣
黄培源
彭憬怡
刘思
陈建文
徐华
肖鹏
关键词:  柔性  薄膜晶体管  栅绝缘层  高介电常数    
Abstract: Flexible oxide thin-film transistors (TFTs) are widely used in lots of fields such as flexible organic light-emitting diode (OLED) displays, flexible sensors and bionic synapses, and so on, for its advantages of high mobility, large on/off current ratio, good device uniformity, good flexibility, light and thin. The gate dielectric layer is crucial for flexible oxide TFTs. It not only affects the basic electrical performance of the device, but also has a significant impact on the electrical stability under bias or light stress. Therefore, the raw and preparation process of gate dielectric layer is the key to achieving high-performance flexible oxide TFTs. In this work, the research progress of gate dielectric layer for flexible oxide TFTs was reviewed. Firstly, several typical film preparation techniques were introduced. Then, gate dielectric materials for flexible oxide TFTs were described in detail, including inorganic high dielectric constant (high-K) dielectric materials such as zirconium oxide (ZrO2), hafnium oxide (HfO2) and aluminum oxide (Al2O3), organic dielectric materials such as polyvinyl pyrrolidone (PVP), polymethyl methacrylate (PMMA) and polyvinyl alcohol (PVA), and double electric layer electrolyte dielectric materials. The advantages and disadvantages of these dielectric materials were discussed. Finally, it summarized the technical characteristics and applications of gate dielectric layer for flexible oxide TFTs and prospected the future development and research of gate dielectric layer technologies.
Key words:  flexible    thin-film transistor    gate dielectric layer    high dielectric constant
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  O484.5  
基金资助: 广东省科技计划项目(2022A0505020022);粤港澳智能微纳光电技术联合实验室资助项目(2020B1212030010);国家自然科学基金(61804029)
通讯作者:  * 肖鹏,佛山大学物理与光电工程学院(粤港澳智能微纳光电技术联合实验室)副教授、硕士研究生导师。2016年华南理工大学材料科学与工程学院材料物理与化学专业博士毕业,毕业后到佛山大学工作至今。目前主要从事氧化物薄膜晶体管、印刷电子等方面的研究工作。发表论文100余篇,包括Applied Physics Letters、Applied Surface Science、ACS Applied Materials & Interfaces等。xiaopeng@fosu.edu.cn   
作者简介:  谭海星,2016年6月于佛山大学获得工学学士学位。现为佛山大学物理与光电工程学院硕士研究生,在肖鹏副教授的指导下进行研究。目前主要研究领域为氧化物薄膜晶体管。
引用本文:    
谭海星, 林剑荣, 黄培源, 彭憬怡, 刘思, 陈建文, 徐华, 肖鹏. 柔性氧化物薄膜晶体管栅绝缘层的研究进展[J]. 材料导报, 2024, 38(23): 23050204-9.
TAN Haixing, LIN Jianrong, HUANG Peiyuan, PENG Jingyi, LIU Si, CHEN Jianwen, XU Hua, XIAO Peng. Research Progress of Gate Dielectric Layer for Flexible Oxide Thin-Film Transistors. Materials Reports, 2024, 38(23): 23050204-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050204  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23050204
1 Nomura K, Ohta H, Takagi A, et al. Nature, 2004, 432(7016), 488.
2 Stewart M, Howell R S, Pires L, et al. IEEE Transactions on Electron Devices, 2001, 48(5), 845.
3 Park J S, Maeng W J, Kim H S, et al. Thin Solid Films, 2012, 520(6), 1679.
4 Fortunato E, Barquinha P, Martins R. Advanced Materials, 2012, 24(22), 2945.
5 Rembert T, Battaglia C, Anders A, et al. Advanced Materials, 2015, 27(40), 6090.
6 Cho J, Choi P, Lee N, et al. Journal of Nanoscience and Nanotechnology, 2016, 16(10), 10380.
7 Lee S, Seo M H. Chemistry-A European Journal, 2018, 24(66), 17419.
8 Xie Y T, Ouyang S H, Wang D P, et al. Journal of Materials Science, 2020, 55(33), 15908.
9 Zhong Y X, Zhou S X, Yao R H, et al. Chinese Journal of Luminescence, 2018, 39(2), 214 (in Chinese).
钟云肖, 周尚雄, 姚日晖, 等. 发光学报, 2018, 39(2), 214.
10 Lin J R, Du Y Q, Liang R B, et al. Materials Research and Application, 2022, 16(3), 353 (in Chinese).
林剑荣, 杜永权, 梁瑞斌, 等. 材料研究与应用, 2022, 16(3), 353.
11 Zhang L R, Xiao W P, Xie F, et al. Materials Research and Application, 2022, 16(5), 718 (in Chinese).
张立荣, 肖文平, 谢飞, 等. 材料研究与应用, 2022, 16(5), 718.
12 Gao Z W, Xu W, Yao R H, et al. Chinese Journal of Liquid Crystals and Displays, 2022, 37(8), 948 (in Chinese).
高执文, 许伟, 姚日晖, 等. 液晶与显示, 2022, 37(8), 948.
13 Wang D W. Chinese Journal of Liquid Crystals and Displays, 2022, 37(6), 709 (in Chinese).
王大巍. 液晶与显示, 2022, 37(6), 709.
14 Xie Y T, Cai K L, Chen P L. Chinese Journal of Lasers, 2022, 49(7), 29 (in Chinese).
谢应涛, 蔡坤林, 陈鹏龙, 等. 中国激光, 2022, 49(7), 29.
15 Aoi T, Oka N, Sato Y, et al. Thin Solid Films, 2010, 518(11), 3004.
16 Moon Y K, Lee S, Kim D H, et al. Japanese Journal of Applied Physics, 2009, 48(3), 031301.
17 Li H, Yang X T, Wang Y J, et al. Chinese Journal of Liquid Crystals and Displays, 2022, 37(11), 1439 (in Chinese).
李慧, 杨小天, 王艳杰, 等. 液晶与显示, 2022, 37(11), 1439.
18 Meng B, Gao X H, Fu Y. Journal of Jilin Jianzhu University, 2022, 39(1), 80 (in Chinese).
孟冰, 高晓红, 付钰, 等. 吉林建筑大学学报, 2022, 39(1), 80.
19 Wang C, Liu Y R, Peng Q, et al. Chinese Journal of Luminescence, 2022, 43(1), 129 (in Chinese).
王聪, 刘玉荣, 彭强, 等. 发光学报, 2022, 43(1), 129.
20 Yao R H, Zheng Z K, Zeng Y, et al. Acta Optica Sinica, 2017, 37(3), 374 (in Chinese).
姚日晖, 郑泽科, 曾勇, 等. 光学学报, 2017, 37(3), 374.
21 Liu G C, Zhang L, Xie H T, et al. Chinese Journal of Vacuum Science and Technology, 2018, 38(1), 43 (in Chinese).
刘国超, 张磊, 解海艇, 等. 真空科学与技术学报, 2018, 38(1), 43.
22 Li C, Wang C, Yang F, et al. Electrical Appliances, 2022(8), 92 (in Chinese).
李超, 王超, 杨帆, 等. 日用电器, 2022(8), 92.
23 Kukli K, Kemell M, Köykkä J, et al. Thin Solid Films, 2015, 589, 597.
24 Chen X, Zhang G Z, Wan J X, et al. Advanced Electronic Materials, 2018, 5(2), 1800583.
25 Yu M C, Ruan D B, Liu P T, et al. IEEE Transactions on Nanotechnology, 2020, 19, 481.
26 Yue L, Meng F X, Ren D S. Europhysics Letters, 2020, 131(6), 67002.
27 Bukke R N, Saha J K, Mude N N, et al. ACS Applied Materials & Interfaces, 2020, 12(31), 35164.
28 Wu B Z, Liao R, Liu Y R. Semiconductor Technology, 2018, 43(5), 321 (in Chinese).
吴宝仔, 廖荣, 刘玉荣. 半导体技术, 2018, 43(5), 321.
29 Divya M, Pradhan J R, Priyadarsini S S, et al. Small, 2022, 18(32), 2202891.
30 Liu H Y, Liao Y J, Wu H Y. Ceramics International, 2022, 48(19), 28790.
31 Wang C P, Tang D, Han S, et al. Physica Status Solidi A-Applications and Materials Science, 2018, 215(11), 1700821.
32 Park S J, Ha T J. Journal of Alloys and Compounds, 2022, 912, 165228.
33 Xia G D, Wang S M. Ceramics International, 2019, 45(13), 16482.
34 Sarkar S K, Maji D, Khan J A, et al. ACS Applied Electronic Materials, 2022, 4(5), 2442.
35 Xie J A, Zhu Z N, Tao H, et al. Coatings, 2020, 10(7), 698.
36 Wang S M, Xia G D. Ceramics International, 2019, 45(17), 23666.
37 Li L W, Chen Y Q, Yin X R, et al. Nanotechnology, 2017, 28(48), 485707.
38 Cai W S, Brownless J, Zhang J W, et al. ACS Applied Electronic Materials, 2019, 1(8), 1581.
39 Hu W T, Yang F, Yang X T. Chinese Journal of Liquid Crystals and Displays, 2022, 37(10), 1310 (in Chinese).
胡伟涛, 杨帆, 杨小天, 等. 液晶与显示, 2022, 37(10), 1310.
40 Shi Q W, Aziz I, Ciou J H, et al. Nano-Micro Letters, 2022, 14(1), 195.
41 Bhalerao S R, Lupo D, Berger P R. Materials Science in Semiconductor Processing, 2022, 139, 106354.
42 Sun Y L, Yang T, Chen K, et al. Laser & Optoelectronics Progress, 2022, 59(19), 397 (in Chinese).
孙云龙, 杨厅, 陈铠, 等. 激光与光电子学进展, 2022, 59(19), 397.
43 Cai Q S, Yang F, Wang C, et al. Chinese Journal of Liquid Crystals and Displays, 2022, 37(12), 1546 (in Chinese).
蔡乾顺, 杨帆, 王超, 等. 液晶与显示, 2022, 37(12), 1546.
44 Hill R M. Philosophical Magazine, 1971, 23(181), 59.
45 Bolat S, Fuchs P, Knobelspies S, et al. Advanced Electronic Materials, 2019, 5(6), 1800843.
46 Tao H, Luo H D, Ning H L, et al. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5), 633 (in Chinese).
陶洪, 罗浩德, 宁洪龙, 等. 液晶与显示, 2021, 36(5), 633.
47 Lai H C, Pei Z, Jian J R, et al. Applied Physics Letters, 2014, 105(3), 033510.
48 Najafi-Ashtiani H, Tavousi A, Ramzannezhad A, et al. Journal of Electronic Materials, 2021, 50(4), 2496.
49 Yang Y H, Li J, Chen Q, et al. IEEE Electron Device Letters, 2020, 41(3), 381.
50 Jeong J W, Hwang H S, Choi D, et al. Micromachines, 2020, 11(3), 264.
51 Hur J S, Kim J O, Kim H A, et al. ACS Applied Materials & Interfaces, 2019, 11(24), 21675.
52 Ning H L, Liang Z H, Fu X, et al. Organic Electronics, 2022, 100, 106383.
53 Herbei E E, Busila M, Alexandru P, et al. Materiale Plastice, 2022, 59(1), 1.
54 Wang X Y, Gao Y, Liu Z H, et al. IEEE Electron Device Letters, 2019, 40(2), 224.
55 Yang J T, Ge C, Du J Y, et al. Advanced Materials, 2018, 30(34), 1801548.
56 Shi J L, Jie J S, Deng W, et al. Advanced Materials, 2022, 34(18), 2200380.
57 Dai C Q, Huo C H, Qi S C, e t al. International Journal of Nanomedicine, 2020, 15, 8037.
58 Wang C, Liu Y R, Peng Q, et al. Chinese Journal of Luminescence, 2022, 43(1), 129 (in Chinese).
王聪, 刘玉荣, 彭强, 等. 发光学报, 2022, 43(1), 129.
59 Liang D K, Chen Y H, Xu W, et al. Acta Physica Sinica, 2018, 67(23), 225 (in Chinese).
梁定康, 陈义豪, 徐威, 等. 物理学报, 2018, 67(23), 225.
60 Yu F, Zhu L Q, Gao W T, et al. ACS Applied Materials & Interfaces, 2018, 10(19), 16881.
61 Jiang S S, He G, Wang W H, et al. Nanomaterials, 2022, 12(18), 3243.
62 Min J G, Cho W J. Molecules, 2021, 26(23), 7233.
63 Guo L Q, Xu C, Zhou H L, et al. Organic Electronics, 2020, 77, 105517.
64 Guo L Q, Xu G, Xu C, et al. Organic Electronics, 2021, 93, 106109.
65 Hu W N, Jiang J, Xie D D, et al. Nanoscale, 2018, 10(31), 14893.
[1] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[2] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[3] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[4] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[5] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[6] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[7] 吴菁, 李佳, 黄金华, 宋伟杰, 谭瑞琴. 聚合物分散液晶器件概述、发展趋势及应用研究进展[J]. 材料导报, 2024, 38(21): 23010078-8.
[8] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[9] 曾剑涛, 王勇, 江国权, 张元祥. 柔性三维力传感器的研究进展[J]. 材料导报, 2024, 38(15): 23100147-11.
[10] 杜姗, 魏云航, 谭宇浩, 周金利, 杨红英, 周伟涛. 蚕丝基柔性可穿戴传感器在人体健康监测中的研究进展[J]. 材料导报, 2024, 38(12): 22100190-11.
[11] 张墅野, 邵建航, 何鹏. 银纳米线透明导电薄膜仿真研究现状[J]. 材料导报, 2024, 38(10): 22110190-10.
[12] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[13] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[14] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[15] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed