Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22050253-10    https://doi.org/10.11896/cldb.22050253
  高分子与聚合物基复合材料 |
剪切增稠液增强高发泡率废纸缓冲材料的制备及性能
张斌1, 陶文轩1, 裴爽1, 任子铭1, 潘政2, 苟进胜1,*
1 北京林业大学材料科学与技术学院,木材科学与工程北京市重点实验室,北京 100083
2 中国林业科学院林产化学工业研究所,南京 210042
Preparation and Properties of Shear Thickening Fluid Reinforced High Foaming Ratio Waste Paper Buffer Material
ZHANG Bin1, TAO Wenxuan1, PEI Shuang1, REN Ziming1, PAN Zheng2, GOU Jinsheng1,*
1 Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
2 Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
下载:  全 文 ( PDF ) ( 21510KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着经济的快速增长和人们环保意识的不断增强,植物纤维类环保型发泡缓冲材料逐渐成为研究热点。为改善植物纤维发泡材料发泡率低、缓冲吸能效果差等问题,本研究设计半密闭型发泡模具,成功制备了具有高发泡率和优异吸能性的废纸缓冲材料并对制备工艺进行了优化。结果表明:使用质量分数为0.5%的氢氧化钠溶液预处理废纸浆,不仅可以有效去除废纸中的杂质,而且能在不降低纤维长度的情况下对废纸纤维进行适当改性,有利于提高废纸缓冲材料的发泡率和整体性能。以正交优化试验研究原料配比对废纸缓冲材料性能的影响,并据此确定了最优配方。通过设计全新半密闭型发泡模具,成功制备高发泡率的废纸缓冲材料,其膨胀率相较传统制备方式提高了3~4倍。本研究首次引入剪切增稠液(STF)增强废纸纤维,考察了STF含量对废纸缓冲材料力学性能、发泡倍率和回弹性能的影响,分析了STF对废纸缓冲材料的增强机理。结果表明:STF能够提高单根废纸纤维的强度并增强纤维之间的连结,从而提升缓冲材料吸能性,且随着STF含量的增加,材料的吸能性逐渐增强,发泡率逐渐降低,当STF含量为10%(质量分数,下同)时,STF增强废纸缓冲材料的综合性能达到最优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张斌
陶文轩
裴爽
任子铭
潘政
苟进胜
关键词:  废纸纤维  剪切增稠液  缓冲包装材料  高发泡率    
Abstract: With the rapid economic growth and continuous enhancement of people’s awareness of environmental protection, eco-friendly plant fiber-based foaming buffer materials have gradually become a research focus. In order to improve some drawbacks of plant fiber-based foaming buffer materials, including low foaming ratio, weak energy absorption, and so on, this study designed a semi-closed foaming mold and successfully prepared buffer materials with high foaming ratio and excellent energy absorption, and the preparation technology was optimized. The results indicated that the impurities in the waste paper are effectively removed, and the waste paper fibers can be modified without reducing the fiber length by using 0.5% sodium hydroxide solution, which is beneficial to improve the foaming ratio and comprehensive performance of waste paper foaming buffer materials. The optimal formula and the effect of the weight of the raw materials composition on the characteristics of waste paper foaming buffer materials were analyzed through the orthogonal test. The waste paper foaming buffer materials with a high foaming ratio were successfully prepared by a newly designed semi-closed foaming mold in this work. Its expansion ratio is increased by 3—4 times compared with the traditional method. This study first introduced shear thickening fluid (STF) as an enhancer to enhance the strength of waste paper fiber, and the influence of the content of STF on mechanical properties, foaming ratio, and the resilience performance of waste paper foaming buffering mate-rials were systematically investigated. And the reinforcement mechanism of STF on waste paper foaming buffering materials was also analyzed. The results reveal that the STF can enhance the strength of waste paper fibers and strengthen the connection between fibers, which can improve the energy absorption of the buffer materials. And with the increase of the STF content, the energy absorption of the buffer material gradually enhanced and the foaming ratio of the buffer materials gradually decreased. The comprehensive performance of STF-reinforced waste paper foaming buffer materials is optimal when the content of STF is 10%.
Key words:  waste paper fiber    shear thickening fluid    buffer packaging material    high foaming ratio
发布日期:  2024-01-16
ZTFLH:  TB484  
基金资助: 国家自然科学基金(32271819)
通讯作者:  苟进胜,北京林业大学材料科学与技术学院副教授、硕士研究生导师。2002年西北轻工业学院包装工程专业本科毕业,2005年陕西科技大学机械设计及理论(包装方向)专业硕士毕业后到北京林业大学工作至今,2012年北京林业大学木材科学与技术(生物质能源方向)专业博士毕业。目前主要从事包装专业课程的教学、新型包装材料和生物质能源方面的研究。在国内外发表相关文章60余篇,其中SCI收录11篇,单篇最高影响因子9.125;获得国家发明专利5项。jinsheng@bjfu.edu.cn   
作者简介:  张斌,2020年7月于北京印刷学院获得工学学士学位。现为北京林业大学材料科学与技术学院硕士研究生,在苟进胜副教授的指导下进行研究。目前主要研究领域为缓冲包装材料。
引用本文:    
张斌, 陶文轩, 裴爽, 任子铭, 潘政, 苟进胜. 剪切增稠液增强高发泡率废纸缓冲材料的制备及性能[J]. 材料导报, 2024, 38(1): 22050253-10.
ZHANG Bin, TAO Wenxuan, PEI Shuang, REN Ziming, PAN Zheng, GOU Jinsheng. Preparation and Properties of Shear Thickening Fluid Reinforced High Foaming Ratio Waste Paper Buffer Material. Materials Reports, 2024, 38(1): 22050253-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050253  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22050253
1 Razza F, Innocenti F D, Dobon A, et al. Journal of Cleaner Production, 2015, 102, 493.
2 Gouw V P, Jung J, Simonsen J, et al. Composites Part A:Applied Science & Manufacturing, 2017, 99, 48.
3 Tajik S, Maghsoudlou Y, Khodaiyan F, et al. Carbohydratio Polymers, 2013, 97, 817.
4 Li J, Yang X, Xiu H, et al. Industrial Crops and Products, 2019, 128, 186.
5 Xiao J F, Xiao S L, Gao X C. Forest Engineering, 2013(2), 9 (in Chinese).
肖俊芳, 肖生苓, 高献策. 森林工程, 2013(2), 9.
6 Cao Y F, Wei L J, Sun H, et al. Journal of Materials Science & Engineering, 2020, 38(5), 9 (in Chinese).
曹延芬, 卫灵君, 孙昊, 等. 材料科学与工程学报, 2020, 38(5), 9.
7 Cao J S, Zhang X C, Zhao R. Packaging Engineering, 2018, 39(9), 37 (in Chinese).
曹景山, 张新昌, 赵瑞. 包装工程, 2018, 39(9), 37.
8 Chen S M. Investigation in preparation and properties of bamboo powder/starch foam composites. Master’s Thesis, Hunan University of Technology, China, 2014 (in Chinese).
陈三梅. 竹粉/淀粉复合发泡材料的制备及其性能研究. 硕士学位论文, 湖南工业大学, 2014.
9 Wang G Y, Shi J Y, Ye S Y. Journal of Northeast Forestry University, 2010, 38(8), 84 (in Chinese).
王古月, 时君友, 叶升友. 东北林业大学学报, 2010, 38(8), 84.
10 Jin C X, Gao J Q, Xie P, et al. New Building Materials, 2010, 37(7), 78 (in Chinese).
金翠霞, 高俊强, 谢普, 等. 新型建筑材料, 2010, 37(7), 78.
11 Wang H Z. Preparation of ultra light material combined salix fiber with waste paper fiber. Master’s Thesis, Inner Mongolia Agricultural University, China, 2015 (in Chinese).
王海珍. 沙柳废纸混合纤维超轻质材料的制备. 硕士学位论文, 内蒙古农业大学, 2015.
12 Li Y L, Wang J J, Shao F W. Packaging Engineering, 2008(11), 5 (in Chinese).
李友良, 王家俊, 邵锋伟. 包装工程, 2008(11), 5.
13 Ju Y N. Research on environmental protection fiber foaming buffer material. Master’s Thesis, Jiangnan University, China, 2012 (in Chinese).
巨杨妮. 环保型纸纤维发泡缓冲材料的研究. 硕士学位论文, 江南大学, 2012.
14 Zeng G S, Lin R Z, Zheng L J, et al. Journal of Functional Materials, 2013, 44(1), 51 (in Chinese).
曾广胜, 林瑞珍, 郑良杰, 等. 功能材料, 2013, 44(1), 51.
15 Pei L. Research on foaming principle of molded pulp product. Master’s Thesis, Xi’an University of Technology, China, 2007 (in Chinese).
裴璐. 纸浆模塑制品发泡机理的研究. 硕士学位论文, 西安理工大学, 2007.
16 Li Y Y. Research about key technology in the process of producing foaming plant fiber molding products. Master’s Thesis, Chongqing Techno-logy and Business University, China, 2008 (in Chinese).
李媛媛. 发泡植物纤维模压制品的关键生产技术研究. 硕士学位论文, 重庆工商大学, 2008.
17 Shi P, Ouyang L, Cai S R. Packaging Journal, 2013, 5(3), 55 (in Chinese).
石璞, 欧阳龙, 蔡淑容. 包装学报, 2013, 5(3), 55.
18 Guo Z, Huang J Y. Packaging Engineering, 2010, 31(15), 55 (in Chinese).
郭震, 黄俊彦. 包装工程, 2010, 31(15), 55.
19 Yu Q, He C X. Materials Reports, 2009, 23(S1), 418 (in Chinese).
郁青, 何春霞. 材料导报, 2009, 23(S1), 418.
20 Xi W. Guangzhou Chemical Industry, 2018, 46(12), 71 (in Chinese).
郗伟. 广州化工, 2018, 46(12), 71.
21 Lee Y S, Wetzel E D, Wagner N J. Journal of Materials Science, 2003, 38(13), 2825.
22 Jeddi M, Yazdani M. Journal of Composite Materials, 2021, 55(16), 2151.
23 Jeddi M, Yazdani M, Hasan-Nezhad H. Thin-Walled Structures, 2021, 168, 108254.
24 Chatterjee V A, Verma S K, Bhattacharjee D, et al. Composite Structures, 2019, 225, 111148.
25 Tan Z H, Zuo L, Li W H, et al. Materials & Design, 2016, 94, 105.
26 Soutrenon M, Michaud V. Smart Materials and Structures, 2014, 23(3), 035022.
27 Fan T, Xue S S, Zhu W B, et al. ACS Applied Materials & Interfaces, 2022, 11, 14.
28 Moghim M H, Keshavarz M, Zebarjad S M. Polymer Bulletin, 2019, 76, 1.
29 Fahool M, Sabet A R. International Journal of Impact Engineering, 2016, 90, 61.
30 Zarei M, Aalaie J. Journal of Materials Research and Technology, 2020, 9(6), 10411.
31 Zhang X, Liang C H. Paper and Paper Making, 2013, 32(2), 22 (in Chinese).
张雪, 梁聪慧. 纸和造纸, 2013, 32(2), 22.
32 Ma Z J. Environment and Development, 2020, 32(5), 72 (in Chinese).
马志娟. 环境与发展, 2020, 32(5), 72.
33 Zhao C. Study on the effects of DCS and fiber properties of OCC by chemical-pretreatment explosion. Master’s Thesis, Guangxi University, China, 2014 (in Chinese).
赵晨. 膨化法处理对废旧瓦楞纸回用过程中溶胶物质和纤维性能的研究. 硕士学位论文, 广西大学, 2014.
34 Xiao M Z. Paper and Biomaterials, 1999(2), 36(in Chinese).
肖明祯. 国际造纸, 1999(2), 36.
35 Zhang H Y. Research on formula optimization and microwave foaming process of waste paper fiber foaming materials. Master’s Thesis, Jiangnan University, China, 2013 (in Chinese).
张惠莹. 废纸纤维发泡材料的配方优化及微波发泡工艺研究. 硕士学位论文, 江南大学, 2013.
36 Wang Z, Li C. Packaging Engineering, 2022, 43(1), 26 (in Chinese).
王哲, 李琛. 包装工程, 2022, 43(1), 26.
37 He J M. New Polymer foam material and technology, Chemical Industry Press, China, 2008, pp. 7 (in Chinese).
何继敏. 新型聚合物发泡材料及技术, 化学工业出版社, 2008, pp. 7.
38 Cai J. Study on preparation and performance of the plant fiber foam cus-hioning material. Master’s Thesis, Xi’an University of Technology, China, 2017 (in Chinese).
蔡静. 植物纤维发泡缓冲材料的制备及性能研究. 硕士学位论文, 西安理工大学, 2017.
39 Chen Y F. Study on preparation and properties of the plant fiber foaming cushion material. Master’s Thesis, Jiangnan University, China, 2015 (in Chinese).
陈玉芬. 植物纤维发泡缓冲材料的制备及其性能研究. 硕士学位论文, 江南大学, 2015.
40 Li B, Zhang X C, Cao J S, et al. Light Industry Machinery, 2018, 36(4), 1 (in Chinese).
李博, 张新昌, 曹景山, 等. 轻工机械, 2018, 36(4), 1.
41 Huo J L, Sun F, Li T T. Journal of Materials Research and Technology, 2020, 9(5), 10982.
42 Wu J J. Study on the technics and packaging properties of waste paper fiber and starch composite foaming material. Master’s Thesis, Tianjin University of Science and Technology, China, 2011 (in Chinese).
武娟娟. 废纸纤维淀粉复合发泡材料工艺与包装性能研究. 硕士学位论文, 天津科技大学, 2011.
43 Wang P, Yu K, Liu X K. Materials Research Express, 2019, 6, 12.
44 Decker M J, Halbach C J, Nam C H, et al. Composites Science & Technology, 2007, 67, 565.
45 Fahool M, Sabet A R. International Journal of Impact Engineering, 2016, 90, 61.
[1] 赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
[2] 王萍, 俞科静, 钱坤, 李永胜, 王纬波. 剪切增稠液在阻尼减振技术中的应用研究[J]. 材料导报, 2021, 35(17): 17218-17224.
[3] 王瑞, 李聃阳, 刘星, 方纾, 伏立松, 熊维成. 氧等离子体处理碳纳米管对剪切增稠液增强芳纶织物防刺性能的影响[J]. 材料导报, 2020, 34(18): 18188-18193.
[4] 刘星, 霍俊丽, 李婷婷, 林佳弘, 楼静文. 等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响[J]. 材料导报, 2019, 33(16): 2799-2803.
[5] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[6] 秦建彬,张广成,史学涛. 剪切增稠液及其复合材料*[J]. 《材料导报》期刊社, 2017, 31(7): 59-64.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed