Please wait a minute...
CLDB  2017, Vol. 31 Issue (13): 160-165    https://doi.org/10.11896/j.issn.1005-023X.2017.013.022
  生物医用材料 |
内源性外泌体作为药物递释系统的研究进展*
赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩
广东药科大学药剂系,广州 510006
Research Progress of Exosomes Used as Drug Delivery System
ZHAO Jialan, WANG Yuemin, NIU Yawei, DONG Xiaoting, QIN Linghao
Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 1345KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 外泌体是一种活细胞分泌的直径为40~100 nm的囊状小泡,是细胞间信息传递、物质交换的重要媒介。作为天然内源性的物质转运载体,采用外泌体负载药物具有毒性低、无免疫原性、渗透性好等优势,目前,外泌体已成功负载小分子化学药物、基因药物用于治疗肿瘤及阿尔茨海默症等疾病。文章将基于外泌体的发展情况就外泌体在药物递送系统中的应用进行详细的介绍分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵嘉兰
王悦敏
牛亚伟
董晓婷
秦凌浩
关键词:  外泌体  载体  药物递送系统  肿瘤    
Abstract: Exosomes are membrane vesicles secreted by living cells with size of 40—100 nm. Exosomes are very important natural messengers involving in cellular communication and substance transportation. As natural carriers for material transportation, exosomes have unique advantages including low toxicity, low immunogenicity and good permeability. So far, small molecular chemical drugs and genetic drugs have been successfully delivered by exosomes for treating tumor disease and Alzheimer′s disease. In this paper, a detailed review of exosomes used as drug delivery system is presented based on recent researches.
Key words:  exosomes    carriers    drug delivery system    tumor
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB39  
基金资助: *广东省自然科学基金(2014A030310362);广州市科技计划项目(201508010036);广州市产学研协同创新重大专项(201605131249066)
通讯作者:  秦凌浩:通讯作者,男,1980年生,博士,副教授,硕士研究生导师,主要从事药剂学研究 E-mail:dor_qin@163.com   
作者简介:  赵嘉兰:女,1992年生,硕士研究生,从事药剂学研究 E-mail:m13424039504@163.com
引用本文:    
赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩. 内源性外泌体作为药物递释系统的研究进展*[J]. CLDB, 2017, 31(13): 160-165.
ZHAO Jialan, WANG Yuemin, NIU Yawei, DONG Xiaoting, QIN Linghao. Research Progress of Exosomes Used as Drug Delivery System. Materials Reports, 2017, 31(13): 160-165.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.022  或          http://www.mater-rep.com/CN/Y2017/V31/I13/160
1 Xitong D, Xiaorong Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases[J]. Gene,2016,575(2):377.
2 Kim M S, Haney M J, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanome-dicine: Nanotechnol, Biol Med,2016,12(3):655.
3 Record M, Subra C, Silvente-Poirot S, et al. Exosomes as intercellular signalosomes and pharmacological effectors[J]. Biochem Pharmacology,2011,81(10):1171.
4 Taverna S, Giallombardo M, Gil-Bazo I, et al. Exosomes isolation and characterization in serum is feasible in non-small cell lung cancer patients: Critical analysis of evidence and potential role in clinical practice[J]. Oncotarget,2016,7(19):28748.
5 Johnsen K B, Gudbergsson J M, Skov M N, et al. A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,2014,1846(1):75.
6 Nishida-Aoki N, Ochiya T. Interactions between cancer cells and normal cells via miRNAs in extracellular vesicles[J]. Cellular Molecular Life Sci,2015,72(10):1849.
7 Milane L, Singh A, Mattheolabakis G, et al. Exosome mediated communication within the tumor microenvironment[J]. J Controlled Release,2015,219:278.
8 Vlassov A V, Magdaleno S, Setterquist R, et al. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Et Biophys Acta,2012,1820(7):940.
9 Tran T H, Mattheolabakis G, Aldawsari H, et al. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases[J]. Clinical Immunology,2015, 160(1):46.
10 Kawikova I, Askenase P W. Diagnostic and therapeutic potentials of exosomes in CNS diseases[J]. Brain Res,2015,1617:63.
11 Batrakova E V, Kim M S. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Controlled Release,2015,219:396.
12 Yamashita T, Takahashi Y, Nishikawa M, et al. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation[J]. Eur J Pharmaceutics Biopharmaceutics,2016,98:1.
13 Johnsen K B, Gudbergsson J M, Skov M N, et al. Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes[J]. Cytotechnology,2016,8:1.
14 Ban J J, Lee M, Im W, et al. Low pH increases the yield of exosome isolation[J]. Biochem Biophys Res Commun,2015,461(1):76.
15 Sunkara V, Woo H K, Cho Y K. Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics[J]. Analyst, 2016,141(2):371.
16 Hannafon B N, Ding W Q. Intercellular communication by exosome-derived microRNAs in cancer[J]. Int J Molecular Sci,2013,14(7):14240.
17 Hazan-Halevy I, Rosenblum D, Weinstein S, et al. Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes[J]. Cancer Lett, 2015,364(1):59.
18 Toda Y, Takata K, Nakagawa Y, et al. Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components[J]. Biochem Biophys Res Commun,2015,456(3):768.
19 Takahashi Y, Nishikawa M, Shinotsuka H, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection[J].J Biotechnol,2013,165(2):77.
20 Smyth T, Kullberg M, Malik N, et al. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes[J]. J Controlled Release,2015,199:145.
21 Fuhrmann G, Serio A, Mazo M, et al. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins[J]. J Controlled Release,2015,205:35.
22 Haney M J, Klyachko N L, Zhao Y, et al. Exosomes as drug deli-very vehicles for Parkinson′s disease therapy[J]. J Controlled Release,2015,207:18.
23 Kooijmans S A A, Stremersch S, Braeckmans K, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles[J]. J Controlled Release,2013,172(1):229.
24 Lamichhane T N, Raiker R S, Jay S M. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery[J]. Molecular Pharmaceutics,2015,12(10):3650.
25 Wahlgren J, Karlson T D L, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes[J]. Nucleic Acids Res,2012, 40(17):610.
26 Shtam T A, Kovalev R A, Varfolomeeva E Y, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro[J]. Cell Communication Signaling,2013,11(1):1.
27 Pascucci L, Coccè V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery[J]. J Controlled Release,2014,192:262.
28 Munoz J L, Bliss S A, Greco S J, et al. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity[J]. Molecular Therapy—Nucleic Acids,2013,2(10):e126.
29 Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth[J]. Cancer Lett,2013,335(1):201.
30 Zhao Y, Haney M J, Gupta R, et al. GDNF-Transfected macrophages produce potent neuroprotective effects in parkinson′s disease mouse model[J]. Plos One,2014,9(9):e106867.
31 Alhasan A H, Patel P C, Choi C H J, et al. Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents[J]. Small,2014,10(1):186.
32 Alvarez-Erviti L, Seow Y, Yin H F, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol,2011,29(4):341.
33 Lee J, Lee H, Goh U, et al. Cellular engineering with membrane fusogenic liposomes to produce functionalized extracellular vesicles[J]. ACS Appl Mater Interfaces,2016,8(11):6790.
34 Kooijmans S A, Fliervoet L A, Van d M R, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time[J]. J Controlled Release,2016, 224:77.
35 Qi H, Liu C, Long L, et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy[J]. ACS Nano,2016,10(3):3323.
36 Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy[J]. Biomaterials,2014,35(7):2383.
37 Toffoli G, Hadla M, Corona G, et al. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin[J]. Nanomedicine,2015,10(19):2963.
38 Saari H, Lázaro-Ibáñez E, Viitala T, et al. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells[J]. J Controlled Release,2015,220:727.
39 Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug deli-very system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes[J]. Molecular Therapy,2010,18(9):1606.
40 Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain[J]. Molecular Therapy,2011,19(10):1769.
41 Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast can-cer cells[J]. Molecular Therapy,2013,21(1):185.
42 Cooper J M, Wiklander P B, Nordin J Z, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice[J]. Movement Disorders, 2014,29(12):1476.
43 Xin H, Li Y, Cui Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats[J]. J Cerebral Blood Flow Metabolism,2013,33(11):1711.
44 Bonafede R, Scambi I, Peroni D, et al. Exosome derived from murine adipose-derived stromal cells: Neuroprotective effect onin vitromodel of amyotrophic lateral sclerosis[J]. Experimental Cell Res,2015,340(1):150.
45 Pusic A D, Pusic K M, Clayton B L L, et al. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination[J]. J Neuroimmunology,2014,266(1):12.
46 Nojima H, Freeman C M, Schuster R M, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate[J]. J Hepatology,2016,64(1):60.
47 Choi J S, Yoon H I, Lee K S, et al. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration[J]. J Controlled Release,2015,222:107.
48 Li K, Chang S, Wang Z, et al. A novel micro-emulsion and micelle assembling method to prepare DEC205 monoclonal antibody coupled cationic nanoliposomes for simulating exosomes to target dendritic cells[J]. Int J Pharmaceutics,2015,491(1):105.
49 Jang S C, Kim O Y, Yoon C M, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors[J]. ACS Nano,2013,7(9):7698.
50 Jo W, Kim J, Yoon J, et al. Large-scale generation of cell-derived nanovesicles[J]. Nanoscale,2014,6(20):12056.
51 Yin W, Ouyang S, Li Y, et al. Immature dendritic cell-derived exosomes: A promise subcellular vaccine for autoimmunity[J]. Inflammation,2013,36(1):232.
52 Yeo R W Y, Lai R C, Zhang B, et al. Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery[J]. Adv Drug Delivery Rev,2013,65(3):336.
53 Lai R C, Yeo R W Y, Tan K H, et al. Exosomes for drug delive-ry—A novel application for the mesenchymal stem cell[J]. Biotech-nol Adv,2013,31(5):543.
[1] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[2] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[3] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[4] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[5] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[6] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[7] 崔可建, 蔡超, 朱才镇. 基于植物多酚构筑新型功能材料[J]. 《材料导报》期刊社, 2018, 32(5): 755-764.
[8] 姚欣蕾, 周淑君, 周涵, 范同祥. 用于CO催化氧化的负载型纳米金催化剂的研究进展*[J]. CLDB, 2017, 31(9): 97-105.
[9] 董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
[10] 桑琬璐, 李兰兰, 高若源, 王晨阳, 杨晓婧. 氨硼烷水解制氢催化剂载体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 27-33.
[11] 韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹. 磁性水凝胶作为药物载体的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 30-35.
[12] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[13] 黄啸,郑曦,易彩霞. 光响应多功能药物载体的制备及其对宫颈癌细胞的抑制作用*[J]. 材料导报编辑部, 2017, 31(10): 37-40.
[14] 张静静, 孙 杰, 李吉刚, 周 添, 陈立泉. 用于CO低温氧化负载型纳米金催化剂研究进展[J]. 材料导报, 2017, 31(1): 136-142.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed