Please wait a minute...
CLDB  2017, Vol. 31 Issue (13): 156-159    https://doi.org/10.11896/j.issn.1005-023X.2017.013.021
  生物医用材料 |
钛合金表面微粗糙化对成骨细胞黏附及增殖行为的影响*
黄润1, 王庆平1, 张兰2, 陈向阳3, 胡东4
1 安徽理工大学材料科学与工程学院,淮南232001;
2 西安交通大学金属材料强度国家重点实验室,西安710049;
3 安徽理工大学机械工程学院,淮南232001;
4 安徽理工大学医学检验中心,淮南 232001
Effect of Surface Microroughening of Titanium Alloy on Osteoblast Adhesion and Proliferation Behavior
HUANG Run1,WANG Qingping1,ZHANG Lan2,CHEN Xiangyang3,HU Dong4
1 School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001;
2 State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049;
3 School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001;
4 Medical Inspection Center, Anhui University of Science and Technology, Huainan 232001
下载:  全 文 ( PDF ) ( 1395KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用表面机械研磨(SMAT)法对Ti-25Nb-3Mo-3Zr-2Sn(TLM)钛合金处理15 min,而后将处理前后的钛合金样品与成骨细胞共培养1 h、24 h。采用X射线衍射(XRD)、光学显微镜(OM)、透射电镜(TEM)、扫描电镜(SEM)、电子能谱(EDX)及激光共聚焦显微镜(CLSM)对处理前后样品表面的结构进行了分析,结果显示SMAT处理不会改变TLM钛合金的物相、晶粒尺度及化学组成,处理前后物相均由单一的β相组成,晶粒尺寸均在10~20 μm且没有引入新的杂质元素,但SMAT处理会改变TLM钛合金的表面粗糙度,处理前的样品表面平整,平均粗糙度Ra为(0.2±0.03) μm,而处理后的样品表面坑洼不平,平均粗糙度Ra增至(2.6±0.4) μm。随后的细胞实验结果显示,对比SMAT处理前,成骨细胞在处理后的微粗糙表面铺展得更为充分,增殖得更加迅速。研究表明,SMAT处理可以改善TLM钛合金表面的成骨细胞生长环境,从而为开发出更符合临床应用的钛金属种植体提供新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄润
王庆平
张兰
陈向阳
胡东
关键词:  钛合金  微粗糙化  成骨细胞  黏附  增殖    
Abstract: Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy was treated via surface mechanical attrition treatment (SMAT) for 15 min in this paper, after which the treated and untreated titanium alloy samples were respectively cultured with osteoblast cells for 1 h and 24 h. XRD, OM, TEM, SEM, EDX and CLSM were adopted to analyze the structure of the samples, and the obtained results revealed that SMAT process did not alter the phase composition, grain size and chemical composition of TLM alloy. Both the treated and untreated titanium alloys were composed of the same solely β phase, in the same grain size of about 10—20 μm and without newly-brought impurity elements. However, this treatment would alter the surface roughness of TLM alloy. The untreated sample possessed a smooth surface with a roughness value Ra of about (0.2±0.03) μm, whereas the treated surface owed an uneven surface with a roughness value Ra of about (2.6±0.4) μm. The subsequent cellular experiment showed that the seeded osteoblasts on SMAT-treated surface spread much wider and proliferated more rapidly compared with the untreated surface. Our study suggests that SMAT could improve the living condition of osteoblast on TLM alloy surface, thus providing a promising means for the design of more potential biomedical titanium implants used on clinic.
Key words:  titanium alloy    microroughening    osteoblast    adhesion    proliferation
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB34  
基金资助: *国家自然科学基金(81501598);西安交通大学金属材料强度国家重点实验室开放研究项目(20161805);安徽理工大学引进人才科研启动基金(ZY533)
作者简介:  黄润:男,1983年生,博士,讲师,主要研究方向为金属材料表面生物医用改性 E-mail:huang.run@stu.xjtu.edu.cn
引用本文:    
黄润, 王庆平, 张兰, 陈向阳, 胡东. 钛合金表面微粗糙化对成骨细胞黏附及增殖行为的影响*[J]. CLDB, 2017, 31(13): 156-159.
HUANG Run, WANG Qingping, ZHANG Lan, CHEN Xiangyang, HU Dong. Effect of Surface Microroughening of Titanium Alloy on Osteoblast Adhesion and Proliferation Behavior. Materials Reports, 2017, 31(13): 156-159.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.021  或          http://www.mater-rep.com/CN/Y2017/V31/I13/156
1 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog Mater Sci,2009,54:397.
2 Ratner B D, Bryant S J. Biomaterials: Where we have been and where we are going[J]. Annu Rev Biomed Eng,2004,6:41.
3 Alm J J, Moritz N, Aro H T. In vitro osteogenic capacity of bone marrow MSCs from postmenopausal women reflect the osseointegration of their cementless hip stems[J]. Bone Rep,2016,5:124.
4 Pilliar R M. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth[J]. Clin Orthop Relat Res,1983,176:42.
5 Challa V S A, Mali S, Misra R D K. Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V[J]. J Biomed Mater Res A, 2013,101:2083.
6 Liu J, Wang X D, Jin Q M, et al. The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings[J]. Biomaterials,2012,33:5036.
7 Huang R, Han Y, Lu S M. Enhanced osteoblast functions and bactericidal effect of Ca and Ag dual-ion implanted surface layers on nanograined titanium alloy[J]. J Mater Chem B,2014, 2:4531.
8 Yu Z T, Zhou L. Influence of martensitic transformation on mecha-nical compatibility of biomedical β type titanium alloy TLM[J]. Mater Sci Eng A,2006,438-440:391.
9 Anselme. Osteoblast adhesion on biomaterials[J]. Biomaterials,2000,21:667.
10 Huang R, Lu S M, Han Y. Role of grain size in the regulation of osteoblast response to Ti-25Nb-3Mo-3Zr-2Sn alloy[J]. Colloids Surf B: Biointerfaces,2013,111:232.
11 Boyan B D, Sylvia V L, Liu Y H, et al. Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2[J]. Biomaterials,1999,20:2305.
12 Martin J Y, Schwartz Z, Hijmmert W, et al. Bone healing after bone marrow stromal cell transplantation to the bone defect[J]. Biomaterials,1993,14(1):115.
13 Wu Y, Zitelli J P, Tenhuisen K S, et al. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness[J]. Biomaterials,2011,32:951.
[1] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[2] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[3] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[4] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[5] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[6] 刘强, 惠松骁, 宋生印, 叶文君, 于洋. 油气开发用钛合金油井管选材及工况适用性研究进展[J]. 材料导报, 2019, 33(5): 841-853.
[7] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[8] 王威娜,徐青杰,周圣雄,秦煜,闫强. 沥青-集料黏附作用评价方法综述[J]. 材料导报, 2019, 33(13): 2197-2205.
[9] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[10] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[11] 姚罡, 付明杰. TNW700高温钛合金热过程中的相组织变化分析[J]. 材料导报, 2018, 32(20): 3584-3589.
[12] 缪倩倩, 陈海燕, 顾伟, 蒋永锋, 宋亓宁. 钛合金表面阳极微弧等离子体渗硼层的研究[J]. 材料导报, 2018, 32(18): 3161-3165.
[13] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[14] 杨海欧,王健,王冲,魏雷,周颖惠,林鑫. 电弧增材制造TC4钛合金宏观晶粒演化规律[J]. 《材料导报》期刊社, 2018, 32(12): 2028-2031.
[15] 刘莹莹, 陈子勇, 金头男, 柴丽华. 600 ℃高温钛合金发展现状与展望[J]. 《材料导报》期刊社, 2018, 32(11): 1863-1869.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed