Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14120-14124    https://doi.org/10.11896/cldb.20040031
  金属与金属基复合材料 |
利用热处理改善钒钛磁铁矿直接制备的铁基摩擦材料组织与性能
陈思潭, 冯可芹*, 张燕燕, 蔡雨晨
四川大学机械工程学院,成都 610065
Improvement of the Microstructure and Properties of Iron-based Material Directly Synthesized from Vanadium-bearing Titanomagnetite Concentrate by Heat Treatment
CHEN Sitan, FENG Keqin*, ZHANG Yanyan, CAI Yuchen
School of Mechanical Engineering, Sichuan University, Chengdu 610065,China
下载:  全 文 ( PDF ) ( 4162KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以攀枝花钒钛磁铁矿为原料,通过选择性碳热原位反应和真空烧结技术直接制备得到铁基摩擦材料。为进一步提高材料性能,本工作研究了淬火与回火处理对铁基摩擦材料组织和性能的影响。结果表明:900~1 000 ℃淬火使材料基体组织由珠光体向马氏体转变,硬度和摩擦性能随淬火温度的升高先提升后下降,在950 ℃时效果最佳,摩擦磨损行为由热处理前较严重的磨粒磨损和粘着磨损转变为磨粒磨损,且磨损程度降低。950 ℃淬火试样分别在250 ℃、500 ℃和650 ℃进行回火处理,基体组织随着温度的升高先由马氏体向低硬度屈氏体转变,而后转变为硬度更低的索氏体,但500 ℃回火时发生的回火二次硬化和碳化物的脱溶使得材料硬度提升,摩擦性能进一步提高,摩擦磨损行为表现为轻微的磨粒磨损。综合而言,950 ℃淬火+500 ℃回火处理后的铁基摩擦材料组织及性能最优,相比未热处理材料,硬度提高32%,磨损率降低61%,摩擦系数降低18%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈思潭
冯可芹
张燕燕
蔡雨晨
关键词:  铁基摩擦材料  钒钛磁铁矿  淬火  回火  摩擦磨损    
Abstract: An iron-based friction material was directly prepared from vanadium-bearing titanomagnetite concentrate by selective carbothermal in-situ reaction and vacuum sintering technology. This study focuses on the effects of quenching and tempering on the material. The results show that the material's microstructure and properties are improved by appropriate quenching and tempering. The microstructure of the material changes from pearlite to martensite by quenching at 900—1 000 ℃. With the increase of quenching temperature, the hardness and tribological properties are enhanced and reach the best by quenching at 950 ℃. Meanwhile, the tribological behavior is ameliorated from severe abrasive and adhesive wear to abrasive wear. Then, 950 ℃ quenched materials were tempered at 250 ℃, 500 ℃ and 650 ℃ respectively. The microstructure changes from martensite to lower-hardness troostite by tempering at 500 ℃, and lowest-hardness sorbate is generated by tempering at 650 ℃. Particularly, secondary hardening in tempering and dissolution of carbides occur by tempering at 500 ℃〗. Therefore, the hardness and tribological properties only get improved when tempering temperature is 500 ℃, and the tribological behavior changes to mild abrasive wear. Consequently, by quenching at 950 ℃ and then tempering at 500 ℃, the microstructure and properties of iron-based friction materials reach the maximum value. The hardness increases by 32%, wear rate decreases by 61% and the friction coefficient decreases by 18%.
Key words:  iron-based friction material    vanadium-bearing titanomagnetite concentrate    quenching    tempering    friction and wear
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TB33  
基金资助: 攀枝花市市级科技计划项目(2017CY-C-1)
通讯作者:  * kqfeng@scu.edu.cn   
作者简介:  陈思潭,2019年9月进入四川大学攻读硕士研究生至今。目前主要研究方向为钒钛资源利用。
冯可芹,四川大学,教授,博士研究生导师。主要从事金属-陶瓷复合材料、钒钛资源综合利用、外场辅助材料的合成与制备、材料制备和冶金过程的物理化学等方面的研究。先后在国内外核心学术期刊上发表学术论文140余篇,其中 SCI 收录53篇,EI收录82篇。
引用本文:    
陈思潭, 冯可芹, 张燕燕, 蔡雨晨. 利用热处理改善钒钛磁铁矿直接制备的铁基摩擦材料组织与性能[J]. 材料导报, 2021, 35(14): 14120-14124.
CHEN Sitan, FENG Keqin, ZHANG Yanyan, CAI Yuchen. Improvement of the Microstructure and Properties of Iron-based Material Directly Synthesized from Vanadium-bearing Titanomagnetite Concentrate by Heat Treatment. Materials Reports, 2021, 35(14): 14120-14124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040031  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14120
1 Zhang Y, Wang X M, Ge Y X, et al. Hot Working Technology, 2014, 43(24), 23(in Chinese).
张宇, 王小美, 葛禹锡, 等. 热加工工艺, 2014, 43(24), 23.
2 Zhao G J, Zhao Q B, Lan J Z, et al. Modern Mining, 2017, 33(7), 198(in Chinese).
赵国君, 赵祺彬, 兰井志, 等. 现代矿业, 2017, 33(7), 198.
3 Li J H, Sun N, Luo J H, et al. Iron Steel Vanadium Titanium, 2016, 37(5), 70(in Chinese).
李俊翰, 孙宁, 罗金华. 钢铁钒钛, 2016, 37(5), 70.
4 Tang T. Panzhihua Sci-Tech & Information, 2016, 41(3), 1(in Chinese).
汤铁. 攀枝花科技与信息, 2016, 41(3), 1.
5 Xue Y Z, Wang X F, Hai J, et al. Natural Resource Economics of China, 2017(4), 9(in Chinese).
薛亚洲, 王雪峰, 海军, 等. 中国国土资源经济, 2017(4), 9.
6 Jayasankar K, Animesh M, Archana P, et al. Materials and Manufactu-ring Processes, 2011, 26(10), 1330.
7 Razieh K, Mansour S, Mohammad A B. International Journal of Refractory Metals & Hard Materials, 2014, 45, 53.
8 Welham N J, Willis P E. Metallurgical and Materials Transactions B, 1998, 29(5), 1077.
9 Welham N J, Williams J S. Metallurgical and Materials Transactions B, 1999, 30(6), 1075.
10 Liu S M, Tang A T, Chen M, et al. Journal of Materials Engineering, 2015, 43(1), 18(in Chinese).
刘胜明, 汤爱涛, 陈敏, 等. 材料工程, 2015, 43(1), 18.
11 Zhang G M, Feng K Q, Yue H F. JOM, 2016, 68(9), 2323.
12 Shui Y, Feng K Q, Yue H F, et al. Journal of Materials Engineering, 2018, 46(9), 73(in Chinese).
税玥, 冯可芹, 岳慧芳, 等. 材料工程, 2018, 46(9), 73.
13 Gong W, Li Z S. Powder Metallurgy Industry, 2010, 20(1), 41(in Chinese).
龚伟, 李自胜. 粉末冶金工业, 2010, 20(1), 41.
14 Li S L, Che Y S, Song J X, et al. Materials(Basel, Switzerland), 2019, 12(19), 3171.
15 Chen G, Chen S, Zhang Y B, et al. Hot Working Technology, 2017, 46(16), 246(in Chinese).
陈刚, 陈珊, 张艳斌, 等. 热加工工艺, 2017, 46(16), 246.
16 Ju J, Fu H G, Lei Y P, et al. In: The Thirteenth National Casting An-nual Meeting & 2016 China Casting Week. Chengdu, China, 2016,pp. 9(in Chinese).
鞠江, 符寒光, 雷永平. 第十三届全国铸造年会暨2016中国铸造活动周. 成都,2016, pp. 9.
17 Deng W L, Feng K Q, Zhang G M, et al. Chinese Journal of Materials Research. 2014, 28(1), 44(in Chinese).
邓伟林,冯可芹,张光明, 等. 材料研究学报, 2014, 28(1), 44.
18 Ren S X. Preparation and properties of Fe-Cu based friction materials for light vehicles. Master's Thesis, Xi'an University of Technology, China, 2019(in Chinese).
任澍忻. 轻型车用Fe-Cu基摩擦材料的制备及性能研究. 硕士学位论文,西安理工大学, 2019.
19 Leng W X, Tian W H, Gao H Y, et al. Rare Metal Materials and Engineering, 2010, 39(S1), 117(in Chinese).
冷文秀, 田文怀, 高红叶, 等. 稀有金属材料与工程, 2010, 39(S1), 117.
20 Han D W, Zhang J X. Metallographic preparation and display technology, Central South University Press, China, 2014(in Chinese).
韩德伟, 张建新. 金相试样制备与显示技术, 中南大学出版社, 2014.
21 Wang X C, Zhang X Y. Modern analysis and testing technology of mate-rials, National Defense Industry Press, China, 2009(in Chinese).
王晓春, 张希艳. 材料现代分析与测试技术, 国防工业出版社, 2009.
22 Tang D, Li W, Li Z C, et al. Transactions of Materials and Heat Treatment, 2014, 35(8), 86(in Chinese).
唐荻, 李维, 李志超, 等. 材料热处理学报, 2014, 35(8), 86.
23 Ding D Q. Metal technology, China Machine Press, China, 2017(in Chinese).
丁德全. 金属工艺学, 机械工业出版社, 2017.
24 Zhang Y L, Jiang F, Liu H, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(3), 427(in Chinese).
张雨龙, 姜锋, 刘辉, 等. 粉末冶金材料科学与工程, 2014, 19(3), 427.
25 Du X K, Shi Z L, Ye M H, et al. Tribology, 2001(4), 256(in Chinese).
杜心康, 石宗利, 叶明惠, 等. 摩擦学学报, 2001(4), 256.
26 Chen J, Xiong X, Yao P P, et al. Powder Metallurgy Technology, 2004(4), 223(in Chinese).
陈洁, 熊翔, 姚萍屏, 等. 粉末冶金技术, 2004(4), 223.
[1] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[2] 温俊霞, 余磊, 曹睿, 车洪艳, 王铁军, 董浩, 闫英杰. 回火处理对一种新型钴基合金表面结构和压缩力学性能的影响[J]. 材料导报, 2021, 35(Z1): 381-385.
[3] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[4] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[5] 岑耀东, 陈林, 董瑞, 周庆飞. 自回火对重轨钢疲劳裂纹扩展行为的影响[J]. 材料导报, 2021, 35(12): 12136-12140.
[6] 左智成, 苏钰, 李军. 加热速率和配分时间对低碳Q&P钢组织及性能的影响[J]. 材料导报, 2021, 35(12): 12156-12160.
[7] 刘云帆, 秦红玲, 韩翠红, 石佳东, 马国政, 王海斗. 自润滑关节轴承寿命试验及损伤失效机理研究现状[J]. 材料导报, 2021, 35(1): 1036-1045.
[8] 陈志凯, 关婷婷, 李强, 王井, 员霄. 激光淬火40Cr钢的冲击磨损行为研究[J]. 材料导报, 2020, 34(Z2): 407-411.
[9] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[10] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[11] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[12] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[13] 徐骏, 朱立坚, 刘刚, 宋炳坷. DLC-PFPE固液复合润滑体系的摩擦磨损性能研究[J]. 材料导报, 2020, 34(Z1): 567-571.
[14] 罗恒, 王优强, 张平. 双液淬火下7A09铝合金的干滑动摩擦磨损性能[J]. 材料导报, 2020, 34(24): 24109-24113.
[15] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed