Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20076-20080    https://doi.org/10.11896/cldb.19080123
  金属与金属基复合材料 |
铸态与挤压态AM50-4%(Zn,Y)合金组织及力学性能
王柏宁, 王峰, 王志, 周乐, 毛萍丽, 刘正
沈阳工业大学材料科学与工程学院,沈阳 110870
Microstructure and Mechanical Properties of As-cast and Extruded AM50-4%(Zn,Y) Alloys
WANG Boning, WANG Feng, WANG Zhi, ZHOU Le, MAO Pingli, LIU Zheng
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
下载:  全 文 ( PDF ) ( 3627KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在AM50合金中加入质量分数为4%的(Zn,Y)(Zn、Y原子比为6),通过OM、XRD、SEM/EDS、EBSD和拉伸试验研究了铸态AM50、铸态及挤压态AM50-4%(Zn,Y)合金的组织和力学性能。结果表明:将Zn、Y加入AM50合金后,组织主要由α-Mg、β-Mg17(Al,Zn)12和Φ-Mg21(Zn, Al)17相以及少量Al6YMn6和Al2Y相组成。添加Zn、Y元素使AM50合金组织细化,β相的数量减少且形貌改善,铸态力学性能提高。在370 ℃对AM50-4%(Zn,Y)合金进行热挤压变形后,固溶到基体中的β-Mg17(Al, Zn)12相沿晶界析出,而Φ相并未析出。同时,少量的Al6YMn6和Al2Y相仍弥散分布于合金基体中。此外,EBSD分析表明,挤压后晶粒细化至7.32 μm,且呈现出典型的挤压织构。由于晶粒细化、沉淀强化以及挤压合金的典型织构,挤压态AM50-4%(Zn, Y)合金的力学性能得到进一步提高,其抗拉强度、屈服强度和伸长率分别达到303 MPa、193 MPa和13%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王柏宁
王峰
王志
周乐
毛萍丽
刘正
关键词:  镁合金  AM50  挤压变形  微观组织  力学性能    
Abstract: The microstructures and mechanical properties of as-cast AM50, as-cast and extruded AM50-4%(Zn,Y) alloys (the atomic ratio of Zn and Y is 6) were studied by OM, XRD, SEM/EDS, EBSD and tensile tests. The results show that the microstructure of alloy is mainly composed of α-Mg, β-Mg17(Al, Zn)12 and Φ-Mg21(Zn, Al)17 phases and a small amount of Al6YMn6 and Al2Y phases when Zn,Y elements are added to AM50 alloy.The addition of Zn,Y element refined the microstructure of AM50 alloy, improved the morphology of β phase, and improved the comprehensive mechanical properties of the alloy. After hot extrusion deformation of AM50-4%(Zn,Y) alloy at 370 ℃, the β-Mg17(Al, Zn)12 phase dissolved in the matrix precipitates again along the grain boundary, but the Φ phase did not precipitate. At the same time, a small amount of Al6YMn6 and Al2Y phases were still dispersed in the alloy matrix. In addition, EBSD analysis shows that the grain size is refined to 7.32 μm after hot extrusion, and show a typical extrusion texture. Due to grain refinement, precipitation strengthening and typical texture of extruded alloy, the mechanical properties of extruded AM50-4%(Zn, Y) alloy were further improved, and its tensile strength, yield strength and elongation can reach to 303 MPa, 193 MPa and 13%, respectively.
Key words:  magnesium alloy    AM50    extrusion deformation    microstructure    mechanical property
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TG146.2  
基金资助: 辽宁省“兴辽英才计划”项目资助项目(XLYC1807021);辽宁省教育厅青年项目资助项目(LQGD2017032);沈阳市中青年科技创新人才支持计划(RC180111)
通讯作者:  wf9709@126.com   
作者简介:  王柏宁,2018年7月毕业于沈阳工业大学,获得工程学士学位。同年8月在沈阳工业大学攻读硕士学位,主要从事高性能镁合金及其应用的研究。
王峰,沈阳工业大学教授,博士研究生导师。主讲《材料成型工艺》《材料成型设备》及《塑性加工力学》等课程。主持及参与教改项目4项,获省教改成果1项,校教育教学成果一等奖1项,二等奖2项。目前,主要从事有色合金及其成形技术的研究,2011年被评为校青年学术骨干,先后主持完成省创新团队项目、省博士启动项目及省教育厅一般项目各1项,以及企业课题4项;参与完成国家“十五”科技支撑计划2项、“十一五”科技支撑计划1项及“十二五”科技支撑计划3项、国际科技合作项目1项、辽宁省科技攻关项目1项及沈阳市科技创新基金项目1项。目前,主持省自然基金项目1项,参与国家自然基金项目、辽宁省教育厅创新团队项目及一般项目各1项。已在Journal of Materials Research、Materials Science and Engineering A、Acta Metallurgica Sinica及金属学报等刊物上发表学术论文45篇,被SCI/EI收录25篇。申请发明专利32项,获授权18项,专利转让6项。曾获中国机械工业协会科学技术奖二等奖2项,辽宁省科技进步奖三等奖2项,沈阳市发明专利二等奖1项。作为副主编编著《镁合金热力学及相图》《压铸实用技术》及《铸造合金熔炼》。
引用本文:    
王柏宁, 王峰, 王志, 周乐, 毛萍丽, 刘正. 铸态与挤压态AM50-4%(Zn,Y)合金组织及力学性能[J]. 材料导报, 2020, 34(20): 20076-20080.
WANG Boning, WANG Feng, WANG Zhi, ZHOU Le, MAO Pingli, LIU Zheng. Microstructure and Mechanical Properties of As-cast and Extruded AM50-4%(Zn,Y) Alloys. Materials Reports, 2020, 34(20): 20076-20080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080123  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20076
1 Bamberger M, Dehm G. Annual Review of Materials Research, 2008, 38(38),505.
2 Yao S, Li Y F. Science of the Total Environment, 2015, 44(1),89.
3 Ali Y, Qiu D, Jiang B, et al. Journal of Alloys and Compounds, 2015, 619,639.
4 Yang M B, Shen W W, Zhong L X, et al. Journal of Chongqing University of Technology (Natural Science), 2019, 33(3),149(in Chinese).
杨明波, 沈威武, 钟罗喜, 等. 重庆理工大学学报(自然科学), 2019, 33(3),149.
5 Jiang W, Cao Z, Liu L, et al. Microscopy and Microanalysis, 2016, 22(4),6.
6 Luo A A, Sachdev A K. Advances in Wrought Magnesium Alloys, 2012(4),393.
7 Meng S J, Yu H, Fan S D, et al. Acta Metallurgica Sinica (English Letters), 2019, 32(2), 145.
8 Yu H, Li C, Xin Y, et al. Acta Materialia, 2017, 128,313.
9 Yang M, Guo T, Li H. Materials Science & Engineering A, 2013, 587(12),132.
10 Xu D K, Tang W N, Liu L, et al. Journal of Alloys and Compounds, 2007, 432(1-2),134.
11 Wang M X, Zhou H, Wang L, et al. Journal of Rare Earth, 2007, 25(1),69(in Chinese).
王明星, 周宏, 王林, 等.中国稀土学报, 2007, 25(1),69.
12 Liu Y, Zhou J X, Liu Y T, et al. Materials Science Forum, 2017, 898,91.
13 Wang F, Ma D Z, Wang Z, et al. Acta Metallica Sinica, 2016, 52(9),1115(in Chinese).
王峰, 马德志, 王志, 等.金属学报, 2016, 52(9),1115.
14 Yang M, Zhang Z, Han X, et al. Journal of the Chinese Society of Rare Earths, DOI:10.11785/S1000-4343.20160406.
15 Zengin H, Turen Y. Materials Chemistry and Physics, 2018, 214, 412.
16 Huang H, Yuan G, Chen C, et al. Materials Letters, 2013, 107,181.
17 Wang Q, Liu K, Wang Z, et al. Journal of Alloys and Compounds, 2014, 602,32.
18 Lin B, Zhang Y B, Sun B, et al. Rare Metal Materials and Engineering, 2016,45(3), 640(in Chinese).
李彬,张英波,孙兵,等.稀有金属材料与工程,2016,45(3),640.
19 Lee J Y, Kim D H, Lim H K, et al. Materials Letters, 2005, 59(29-30),3801.
20 Braszczyńska-Malik K N. Journal of Alloys and Compounds, 2017, 694, 841.
21 Wang J L, Peng Q M, Wu Y M, et al. Transactions of Nonferrous Metals Society of China, 2006, 16(s1), 703.
22 Garcés G, Oñorbe E, Gan W, et al. Materials Characterization, 2017, 126,116.
23 Medina J, Pérez P, Garces G, et al. Materials Characterization, DOI:S1044580316301577.
24 Al-Maharbi M, Karaman I, Beyerlein I J, et al. Materials Science and Engineering A, 2011, 528(25-26),7616.
25 Dai S, Wang F, De-Zhi M A, et al. The Chinese Journal of Nonferrous Metals, 2018, 28, 12.
26 Akbaripanah F, Fereshteh-Saniee F, Mahmudi R, et al. Materials & Design, 2013, 43,31.
27 Biswas S, Suwas S, Sikand R, et al. Materials Science & Engineering: A, 2011, 528(10-11),3722.
28 Uichiro M. MRS Bulletin, 2012, 37(2), 169.
29 Zheng J, Wang Y, Ma G, et al. Titanium Industry Progress, 2008(5),23(in Chinese).
郑晶, 王轶, 马光, 等.钛工业进展, 2008(5),23.
30 Cai S H, Lei T, Li N F, et al, Materials Science & Engineering: C, 2012,32,2570.
31 Chen Z H, Xia W J, Cheng Y Q, et al. The Chinese Journal of Nonferrous Metals, 2005(1), 1(in Chinese).
陈振华, 夏伟军, 程永奇, 等.中国有色金属学报, 2005(1),1.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed