Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 112-116    https://doi.org/10.11896/j.issn.1005-023X.2017.05.018
  新材料新技术 |
木质素催化降解液化的研究进展
崔玉虎1, 王奇1, 苟光俊1, 姜曼1, 周祚万1, 张胜利2, 付金丽3
1 西南交通大学材料科学与工程学院,材料先进技术教育部重点实验室,成都 610031;
2 西南交通大学地球科学 与环境工程学院,成都610031;
3 成都丽雅纤维股份有限公司,成都610300
Advances in Catalytic Degradation Liquefaction of Lignin
CUI Yuhu1, WANG Qi1, GOU Guangjun1, JIANG Man1, ZHOU Zuowan1,
ZHANG Shengli2, FU Jinli3
1 Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdou 610031;
2 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdou 610031;
3 Chengdu Grace Fiber Co., Ltd., Chengdou 610300
下载:  全 文 ( PDF ) ( 1261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 木质素是自然界中含量仅次于纤维素的天然有机高分子,它是以3种苯丙烷(芥子醇、松柏醇和香豆醇)为结构单元,通过C-C和C-O-C键连接形成的无定形网状大分子,是自然界唯一可再生的芳香类物质原料。木质素在生产大宗化学品和精细化学品方面有着巨大潜力。但是,木质素复杂的结构导致其难以高效、高选择性转化而被有效利用。近年来,有关木质素催化降解液化的研究成为一个备受关注的热点。概述了木质素催化降解液化的研究现状,基于溶液状态下木质素分子尺度和形态分析,设计与之匹配的负载酸和金属粒子的介孔催化剂,可实现木质素在有限孔道内催化降解以及抑制降解片段重聚,最后对其未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔玉虎
王奇
苟光俊
姜曼
周祚万
张胜利
付金丽
关键词:  木质素  催化  降解液化    
Abstract: Lignin is the second abundant natural organic polymer, only second to cellulose, which is a complex three-dimensional amorphous polymer, consisting of three different monomer units (sinapyl, coniferyl , and p-coumaryl alcohols) linked with various C-C and C-O-C linkages. It is the richest source of renewable aromatic compounds on planet, and harbors great potential for the production of industrially relevant aromatic bulk and fine chemicals. However, its inherent complexity of chemical linkages makes it difficult to achieve selectivity in chemical transformations. In recent years, the research on catalytic degradation liquefaction of lignin has attracted more and more attention. In this paper, the advances in the field of catalytic degradation liquefaction of lignin are reviewed, and the mesoporous solid acid catalysts loaded with metal particles are put forward to be an efficient way for the degradation liquefaction of lignin. Based on the analysis of the size and morphology of lignin molecules in the solution, the matching mesoporous catalysts loaded with acid and metal particles are designed, which can realize the catalytic degradation of lignin in finite channels and restrain the repolymerization of the degradation fragments considerably.
Key words:  lignin    catalysis    degradation liquefaction
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  O469  
  TB324  
通讯作者:  姜曼:,女,1977年生,博士,副教授,硕士研究生导师,从事天然有机高分子材料研究 E-mail:jiangman1021@home.swjtu.edu.cn   
作者简介:  崔玉虎:男,1990年生,硕士研究生,从事生物质组分分离及利用研究 E-mail:cuiyuhu0310@163.com
引用本文:    
崔玉虎, 王奇, 苟光俊, 姜曼, 周祚万, 张胜利, 付金丽. 木质素催化降解液化的研究进展[J]. 《材料导报》期刊社, 2017, 31(5): 112-116.
CUI Yuhu, WANG Qi, GOU Guangjun, JIANG Man, ZHOU Zuowan, ZHANG Shengli, FU Jinli. Advances in Catalytic Degradation Liquefaction of Lignin. Materials Reports, 2017, 31(5): 112-116.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.018  或          http://www.mater-rep.com/CN/Y2017/V31/I5/112
1 Amidon T E, Shijie L. Water-based woody biorefinery[J]. Biotechnol Adv,2009,27(5):542.
2 Perlack R D, Wright L L, Turhollow A F, et al. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibi-lity of a billion-ton annual supply[R]. Oak Ridge: U.S. Department of Energy,2005.
3 Joseph Z, Pieter C A, Bruijnincx Anna L J, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chem Rev,2010,110(6):3552.
4 Li C, Zhao X, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem Rev,2015,115(21):11559.
5 Ma Z, Ekaterina T, Jeroen A B. Controlling the selectivity to che-micals from lignin via catalytic fast pyrolysis [J]. Appl Catal A: General,2012,423(424):130.
6 D`Aleio G F. Process of preparing a lignin-phenol-formaldehyde resin dispersion: US2357090[P].1944-08-29.
7 Christoph A G, Gregor H, Andreas S, et al. Multi-catalysis reactions: New prospects and challenges of biotechnology to valorize lignin[J]. Appl Microbiol Biot,2012,95(5):1115.
8 Davinia S, Eric M K, Claire T N, et al. Towards lignin consolidated bioprocessing: Simultaneous lignin depolymerization and product generation by bacteria [J]. Green Chem,2015,17:4951.
9 Phillip F B, et al. Pyrolysis mechanisms of lignin: Surface-immobilized model compound investigation of acid-catalyzed and free-radical reaction pathways [J]. J Anal Appl Pyrol,1995,33:1.
10 Peter J D, Martin S, Fanny T, et al. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolyme-rization of lignin[J]. J Am Chem Soc,2015,137(23):7456.
11 Zeng J, GeunYoo C, Wang F, et al. Biomimetic fenton-catalyzed lignin depolymerization to high value aromatics and dicarboxylic acids[J]. ChemSusChem, 2015, 8(5): 861.
12 Yuan Z S, Mathew L, et al. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol[J]. Bioresource Technol,2010,101(23):9308.
13 Blair J C, John G E. Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst [J]. Bioresource Technol,2012,118:584.
14 Huang X M, Tamás I K, Michael D B, et al. Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics [J]. Green Chem,2015,17:4941.
15 Chen F, Meng X, Xiao F S. Mesoporous solid acid catalysts [J]. Catal Surv Asia,2011,15(1):37.
16 Xie W,Qi C, Wang H, et al. Phenylsulfonic acid functionalized mesoporous SBA-15 silica: A heterogeneous catalyst for removal of free fatty acids in vegetable oil [J]. Fuel Process Technol,2014,119:98.
17 Lilis H, Ahmad Z A, Abdul R M. Synthesis of monoglyceride through glycerol esterification with lauric acid over propyl sulfonic acid post-synthesis functionalized SBA-15 mesoporous catalyst [J]. Chem Eng J,2011,174(2-3):668.
18 Zwo D, James L, Dan C, et al. Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production [J]. Appl Catal B-Environ,2013,129:342.
19 Gabriel M L, Fernando B, et al. Low-grade oils and fats: Effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts [J]. Bioresource Technol,2011,102(20):9571.
20 Elisabetta M U, Maria F S, Daniela M, et al. Sulfonic acid-functio-nalized mesoporous silicas: Microcalorimetric characterization and catalytic performance toward biodiesel synthesis [J]. Microp Mesop Mat,2013,179:54.
21 Gabriel M, L Fernando B, Juan A M, et al. Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts [J]. Chem Eng J,2010,161(3):323.
22 Isa K M, Kyle J M, Brent H S. Acidic mesoporous silica for the ca-talytic conversion of fatty acids in beef tallow [J]. Ind Eng Chem Res,2006,45(9):3022.
23 Michikazu H. Biodiesel production by amorphous carbon bearing SO3H, COOH and phenolic OH groups, a solid Brnsted acid catalyst [J]. Top Catal,2010,53(11):805.
24 Ayillath K D, Paresh L D. Lignin depolymerization into aromatic monomers over solid acid catalysts [J]. ACS Catal,2015,5(1):365.
25 Fan C, Guan H, Zhang H, et al. Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt [J]. Biomass Bioenerg,2011,35(7):2659.
26 Matthew T, Chunbao (Charles) X. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds [J]. Bioresource Technol,2010,101(7):2483.
27 Ana T, Luis S, Jalel L. Organosolv lignin depolymerization with different base catalysts [J]. J Chem Technol Biotechnol,2012,87(11):1593.
28 Zhang J, Jason T, Chen X, et al. A series of NiM (M= Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water [J]. ACS Catal,2014,4(5):1574.
29 Shu R, Long J, Yuan Z, et al. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C [J]. Bioresource Technol,2015,179:84.
30 Trasarti A F, Segobia D J, Apesteguía C R, et al. Selective hydrogenation of soybean oil on copper catalysts as a tool towards improved bioproducts [J]. J Am Oil Chem Soc,2012,89(12):2245.
31 Irina L S, Olga A S, Anatoliy V R, et al. Hydrogenation of vegetable oils over Pd on nanocomposite carbon catalysts[J]. Ind Eng Chem Res,2008,47(19):7219.
32 Tarit N, Ron C R, Susan E E, et al. Upgrading of lignin-derived compounds: Reactions of eugenol catalyzed by HY zeolite and by Pt/γ-Al2O3 [J]. Catal Lett,2012,142:151.
33 Li H, Yu D, Yu Y, et al. Effect of preparation method on the structure and catalytic property of activated carbon supported nickel oxide catalysts [J]. Carbon,2010,48(15):4547.
34 Daniel F, Ursel H, Philipp K, et al. Influence of RANEY nickel on the formation of intermediates in the degradation of lignin [J]. Int J Chem Eng,2012,2012:8.
35 Ning Y, Chen Z, Paul J D, et al. Selective degradation of wood lignin over noble metal catalysts in a two-step process [J]. ChemSusChem,2008,1(7):626.
36 Susan K H, Baker R T. Knocking on wood: Base metal complexes as catalysts for selective oxidation of lignin models and extracts [J]. Acc Chem Res,2015,48(7):2037.
37 Tian S,Li Y,Li M, et al. Structural isomerism in gold nanoparticles revealed by X-ray crystallography [J]. Nat Commun,2015,6:1.
38 James M P, Harold H. Studies on lignin and related compounds. Lxxxvii. High pressure hydrogenation of maple wood [J]. J Am Chem Soc,1948,70(1):67.
39 Ernest W, Enrique L M, Charles S S. Nickel-induced conversion of carbon-oxygen into carbon-carbon bonds. One-step transformations of enol ethers into olefins and aryl ethers into biaryls[J]. J Am Chem Soc,1979,101(8):2246.
40 Alexey G S, John F H. Selective, nickel-catalyzed hydrogenolysis of aryl ethers [J]. Science, 2011,332(6028):439.
41 Michèle B, Pierre G, Catherine P. Conversion of biomass into che-micals over metal catalysts [J]. Chem Rev,2014,114(3):1827.
42 Armindo R G, José A F G, Dmitry V E, et al. Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: A review [J]. Green Chem,2007,9:717.
43 Magario I, Einschlag F S García, Rueda E H, et al. Mechanisms of radical generation in the removal of phenol derivatives and pigments using different Fe-based catalytic systems [J]. J Mol Catal A-Chem,2012,352:1.
44 Ning Y, Yuan Y, Ryan D, et al. Hydrodeoxygenation of lignin berived phenols into alkanes by using nanoparticle catalysts combined with Brønsted acidic ionic liquids [J]. Angrew Chem Int Ed,2010,49(32):5549.
45 Hai W, Melvin T, Yun J. Recent development in chemical depolymerization of lignin: A review [J]. J Appl Chem,2013,2013:1.
46 Yang Y, Fan H, Song J, et al. Free radical reaction promoted by io-nic liquid: A route for metal-free oxidation depolymerization of lignin model compound and lignin [J]. Chem Commun,2015,51:4028.
47 Lu Z, Zheng H, Fan L, et al. Direct liquefaction of biomass in a 1-(4-Sulfobutyl)-3-methylmidazolium hydrosulfate ionic liquid/1-octanol catalytic system [J]. Energy Fuel,2014,28:1139.
48 Bin L, Ilari F, Dimitris S A. Acidolysis of wood in ionic liquids [J]. Ind Eng Chem Res,2010,49(7):3126.
49 Jia S, Cox B J, et al. Hydrolytic cleavage of beta-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides [J]. Ind Eng Chem Res,2011,50(2):849.
50 Yu H, Hu J, Fan J, et al. One-pot conversion of sugars and lignin in ionic liquid and recycling of ionic liquid [J]. Ind Eng Chem Res,2012,51(8):3452.
51 Joseph Z, Anna L J, Bert M W. Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic li-quids [J]. Green Chem,2010,12:1225.
52 Fernández-Prinia R, Laura J M, Ernesto M. Near-critical and supercritical dilute solutions viewed from macroscopic and molecular-scale perspectives [J]. J Supercrit Fluid,2010,55(2):472.
53 Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions [J]. J Supercrit Fluid,2007,41(3):361.
54 Saqib S T, Lasse R, Andreas R. Hydrothermal liquefaction of biomass: A review of subcritical water technologies [J]. Energy,2011,36(5):2328.
55 Jae-Young K Jeesu P, Hyewon H, Jeong K K, et al. Catalytic depolymerization of lignin macromolecule to alkylated phenols over va-rious metal catalysts in supercritical tert-butanol [J]. J Anal Appl Pyrol,2015,113:99.
56 Huang X, Ceylanpinar A, Tamás I K, et al. Role of Cu-Mg-Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol [J]. ACS Catal,2015,5(12):7359.
57 Richard J A G, Wouter T, Jan E G D, et al. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals [J]. Bioresource Technol,2012,106:173.
58 Edita J G, Matjaž K, Claudia C. Lignin structural changes during liquefaction in acidified ethylene glycol [J]. J Wood Chem Technol,2012,32(4):342.
59 Ane S, Luis S, Rodrigo B, et al. Lignin liquefaction under microwave heating [J]. J Appl Sci,2013,130(5):3292.
60 Matjaž K,Edita J,NataŠa C.Ultrasonically assisted liquefaction of lignocellulosic materials [J].Bioresource Technol,2012,103(1):360.
61 Shaveta, Harshpinder K, Palwinder S. Microwave assisted degradation of lignin to monolignols [J]. Pharm Anal Acta,2014,5:308.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[3] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[4] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[5] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[6] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[7] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[8] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[9] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[10] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[11] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[12] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[13] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[14] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[15] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed